Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Two-sided Laplace transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== The following properties can be found in {{harvtxt|Bracewell|2000}} and {{harvtxt|Oppenheim|Willsky|1997}} {| class="wikitable" |+ Properties of the bilateral Laplace transform |- ! Property !! Time domain !! {{math|''s''}} domain !! Strip of convergence !! Comment |- | Definition | <math> f(t) </math> | <math> F(s) = \mathcal{B}\{f\}(s) = \int_{-\infty}^{\infty} f(t) \, e^{-st} \, dt </math> | <math> \alpha < \Re s < \beta </math> | |- | Time scaling | <math>f(at)</math> | <math> \frac{1}{|a|} F \left ({s \over a} \right)</math> | <math> \alpha < a^{-1} \, \Re s < \beta </math> | <math> a \in\mathbb{R} </math> |- | Reversal | <math> f(-t) </math> | <math> F(-s)</math> | <math> -\beta < \Re s < -\alpha </math> | |- | Frequency-domain derivative | <math> t f(t) </math> | <math> -F'(s) </math> | <math> \alpha < \Re s < \beta </math> | |- | Frequency-domain general derivative | <math> t^{n} f(t) </math> | <math> (-1)^{n} \, F^{(n)}(s) </math> | <math> \alpha < \Re s < \beta </math> | |- | Derivative | <math> f'(t) </math> | <math> s F(s) </math> | <math> \alpha < \Re s < \beta </math> | |- | General derivative | <math> f^{(n)}(t) </math> | <math> s^n \, F(s) </math> | <math> \alpha < \Re s < \beta </math> | |- | Frequency-domain integration | <math> \frac{1}{t}\,f(t) </math> | <math> \int_s^\infty F(\sigma)\, d\sigma </math> | | only valid if the integral exists |- | Time-domain integral | <math> \int_{-\infty}^t f(\tau)\, d\tau </math> | <math> {1 \over s} F(s) </math> | <math> \max(\alpha,0) < \real s < \beta </math> | |- | Time-domain integral | <math> \int_{t}^{\infty} f(\tau)\, d\tau </math> | <math> {1 \over s} F(s) </math> | <math> \alpha < \real s < \min(\beta,0) </math> | |- | Frequency shifting | <math> e^{at} \, f(t) </math> | <math> F(s - a) </math> | <math> \alpha + \Re a < \Re s < \beta + \Re a </math> | |- | Time shifting | <math> f(t - a) </math> | <math> e^{-as} \, F(s) </math> | <math> \alpha < \Re s < \beta </math> | <math> a\in\mathbb{R} </math> |- | Modulation | <math> \cos(at)\,f(t) </math> | <math> \tfrac{1}{2} F(s-ia) + \tfrac{1}{2} F(s+ia) </math> | <math> \alpha < \Re s < \beta </math> | <math> a\in\mathbb{R} </math> |- | Finite difference | <math> f(t+\tfrac{1}{2}a)-f(t-\tfrac{1}{2}a) </math> | <math> 2 \sinh(\tfrac{1}{2} a s) \, F(s) </math> | <math> \alpha < \Re s < \beta </math> | <math> a\in\mathbb{R} </math> |- | Multiplication | <math>f(t)\,g(t)</math> | <math> \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty}F(\sigma)G(s - \sigma)\,d\sigma \ </math> | <math> \alpha_f+\alpha_g < \Re s < \beta_f+\beta_g </math> | <math> \alpha_f < c < \beta_f </math>. The integration is done along the vertical line {{nowrap|1=Re(''Ο'') = ''c''}} inside the region of convergence. |- | Complex conjugation | <math> \overline{f(t)} </math> | <math> \overline{F(\overline{s})} </math> | <math> \alpha < \Re s < \beta </math> | |- | [[Convolution]] | <math> (f * g)(t) = \int_{-\infty}^{\infty} f(\tau)\,g(t - \tau)\,d\tau </math> | <math> F(s) \cdot G(s) \ </math> | <math> \max(\alpha_f,\alpha_g) < \Re s < \min(\beta_f,\beta_g) </math> | |- | [[Cross-correlation]] | <math> (f\star g)(t) = \int_{-\infty}^{\infty} \overline{f(\tau)}\,g(t + \tau)\,d\tau </math> | <math> \overline{F(-\overline{s})} \cdot G(s) </math> | <math> \max(-\beta_f,\alpha_g) < \Re s < \min(-\alpha_f,\beta_g) </math> | |} Most properties of the bilateral Laplace transform are very similar to properties of the unilateral Laplace transform, but there are some important differences: {| class="wikitable" |+ '''Properties of the unilateral transform vs. properties of the bilateral transform''' ! ! unilateral time domain ! bilateral time domain ! unilateral-'s' domain ! bilateral-'s' domain |- ! [[Derivative|Differentiation]] | <math> f'(t) \ </math> | <math> f'(t) \ </math> | <math> s F(s) - f(0) \ </math> | <math> s F(s) \ </math> |- ! Second-order [[Derivative|differentiation]] | <math> f''(t) \ </math> | <math> f''(t) \ </math> | <math> s^2 F(s) - s f(0) - f'(0) \ </math> | <math> s^2 F(s) \ </math> |- ! [[Convolution]] | <math> \int_0^{t} f(\tau) \, g(t-\tau) \, d\tau \ </math> | <math> \int_{-\infty}^{\infty} f(\tau) \, g(t-\tau) \,d\tau \ </math> | <math> F(s) \cdot G(s) \ </math> | <math> F(s) \cdot G(s) \ </math> |- |} ===Parseval's theorem and Plancherel's theorem=== Let <math>f_1(t)</math> and <math>f_2(t)</math> be functions with bilateral Laplace transforms <math>F_1(s)</math> and <math>F_2(s)</math> in the strips of convergence <math>\alpha_{1,2}<\real s<\beta_{1,2}</math>. Let <math>c\in\mathbb{R}</math> with <math>\max(-\beta_1,\alpha_2)<c<\min(-\alpha_1,\beta_2)</math>. Then [[Parseval's theorem]] holds: <ref>{{harvnb|LePage|1980|loc=Chapter 11-3, p.340}}</ref> :<math> \int_{-\infty}^{\infty} \overline{f_1(t)}\,f_2(t)\,dt = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \overline{F_1(-\overline{s})}\,F_2(s)\,ds </math> This theorem is proved by applying the inverse Laplace transform on the convolution theorem in form of the cross-correlation. Let <math>f(t)</math> be a function with bilateral Laplace transform <math>F(s)</math> in the strip of convergence <math>\alpha<\Re s<\beta</math>. Let <math>c\in\mathbb{R}</math> with <math> \alpha<c<\beta </math>. Then the [[Plancherel theorem]] holds: <ref>{{harvnb|Widder|1941|loc=Chapter VI, Β§8, p.246}}</ref> :<math> \int_{-\infty}^{\infty} e^{-2c\,t} \, |f(t)|^2 \,dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(c+ir)|^2 \, dr </math> ===Uniqueness=== For any two functions <math display="inline"> f,g </math> for which the two-sided Laplace transforms <math display="inline"> \mathcal{T} \{f\}, \mathcal{T} \{g\} </math> exist, if <math display="inline"> \mathcal{T}\{f\} = \mathcal{T} \{g\}, </math> i.e. <math display="inline"> \mathcal{T}\{f\}(s) = \mathcal{T}\{g\}(s) </math> for every value of <math display="inline"> s\in\mathbb R, </math> then <math display="inline"> f=g </math> [[almost everywhere]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)