Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uniform continuity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Definition of (ordinary) continuity === * <math>f</math> is called '''continuous''' <math> \underline{\text{at } x} </math> if for every [[real number]] <math> \varepsilon > 0 </math> there exists a real number <math> \delta > 0 </math> such that for every <math> y \in X </math> with <math> d_1(x,y) < \delta </math>, we have <math> d_2(f(x),f(y)) < \varepsilon </math>. The set <math> \{ y \in X: d_1(x,y) < \delta\} </math> is a neighbourhood of <math> x </math>. Thus, (ordinary) continuity is a local property of the function at the point <math> x </math>. * Equivalently, a function <math>f</math> is said to be continuous if <math>\forall x \in X \; \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall y \in X : \, d_1(x,y) < \delta \, \Rightarrow \, d_2(f(x),f(y)) < \varepsilon</math>. * Alternatively, a function <math>f</math> is said to be continuous if there is a function of all positive real numbers <math>\varepsilon</math> and <math>x \in X</math>, <math>\delta(\varepsilon, x)</math> representing the maximum positive real number, such that at each <math>x</math> if <math>y \in X</math> satisfies <math> d_1(x,y) < \delta(\varepsilon,x) </math> then <math> d_2(f(x),f(y)) < \varepsilon </math>. At every <math>x</math>, <math>\delta(\varepsilon, x)</math> is a monotonically non-decreasing function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)