Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Unijunction transistor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Construction == {{Disputed section|date=October 2021}} [[Image:UJT struttura.png|thumb|right|130px|Structure of a p-type UJT]] [[Image:Unijuction transistor KT117 (open).jpg|thumb|130px|UJT die: the larger contact in the centre of the crystal is the emitter, the smaller one is B<sub>1</sub>; B<sub>2</sub> is at the bottom of the crystal]] The UJT has three terminals: an emitter (E) and two bases (B<sub>1</sub> and B<sub>2</sub>) and so is sometimes known a "double-base diode". The base is formed by a lightly [[Doping (semiconductor)|doped]] [[N-type semiconductor|n-type]] bar of silicon. Two ohmic contacts B<sub>1</sub> and B<sub>2</sub> are attached at its ends. The emitter is of heavily-doped [[P-type semiconductor|p-type]] material. The single PN junction between the emitter and the base gives the device its name. The resistance between B1 and B2 when the emitter is open-circuit is called ''interbase resistance''. The emitter junction is usually located closer to base-2 (B2) than base-1 (B1) so that the device is not symmetrical, because a symmetrical unit does not provide optimum electrical characteristics for most of the applications. If no potential difference exists between its emitter and either of its base leads, there is an extremely small [[Electric current|current]] from B<sub>1</sub> to B<sub>2</sub>. On the other hand, if an adequately large voltage relative to its base leads, known as the ''trigger voltage'', is applied to its emitter, then a very large current from its emitter joins the current from B<sub>1</sub> to B<sub>2</sub>, which creates a larger B<sub>2</sub> output current. The [[schematic diagram]] symbol for a unijunction transistor represents the emitter lead with an arrow, showing the direction of [[conventional current]] when the emitter-base junction is conducting a current. A complementary UJT uses a p-type base and an n-type emitter, and operates the same as the n-type base device but with all voltage polarities reversed. The structure of a UJT is similar to that of an N-channel [[JFET]], but p-type (gate) material surrounds the N-type (channel) material in a JFET, and the gate surface is larger than the emitter junction of UJT. A UJT is operated with the emitter junction forward-biased while the JFET is normally operated with the gate junction reverse-biased. The UJT is a current-controlled [[negative resistance]] device.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)