Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vandermonde matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===First proof: Polynomial properties=== The first proof relies on properties of polynomials. By the [[Leibniz formula (determinant)|Leibniz formula]], <math>\det(V)</math> is a polynomial in the <math>x_i</math>, with [[integer]] coefficients. All entries of the <math>(i-1)</math>-th column have [[total degree]] <math>i</math>. Thus, again by the Leibniz formula, all terms of the determinant have total degree :<math>0 + 1 + 2 + \cdots + n = \frac{n(n+1)}2;</math> (that is, the determinant is a [[homogeneous polynomial]] of this degree). If, for <math>i \neq j</math>, one substitutes <math>x_i</math> for <math>x_j</math>, one gets a matrix with two equal rows, which has thus a zero determinant. Thus, considering the determinant as [[univariate]] in <math>x_i,</math> the [[factor theorem]] implies that <math>x_j-x_i</math> is a divisor of <math>\det(V).</math> It thus follows that for all <math>i</math> and <math>j</math>, <math>x_j-x_i</math> is a divisor of <math>\det(V).</math> This will now be strengthened to show that the product of all those divisors of <math>\det(V)</math> is a divisor of <math>\det(V).</math> Indeed, let <math>p</math> be a polynomial with <math>x_i-x_j</math> as a factor, then <math>p=(x_i-x_j)\,q,</math> for some polynomial <math>q.</math> If <math>x_k-x_l</math> is another factor of <math>p,</math> then <math>p</math> becomes zero after the substitution of <math>x_k</math> for <math>x_l.</math> If <math>\{x_i,x_j\}\neq \{x_k, x_l\}, </math> the factor <math>q</math> becomes zero after this substitution, since the factor <math>x_i-x_j</math> remains nonzero. So, by the factor theorem, <math>x_k-x_l</math> divides <math>q,</math> and <math>(x_i-x_j)\,(x_k-x_l)</math> divides <math>p.</math> Iterating this process by starting from <math>\det(V),</math> one gets that <math>\det(V)</math> is divisible by the product of all <math>x_i-x_j</math> with <math>i<j;</math> that is :<math>\det(V)=Q\prod_{0\le i<j\le n} (x_j-x_i),</math> where <math>Q</math> is a polynomial. As the product of all <math>x_j-x_i</math> and <math>\det(V)</math> have the same degree <math>n(n + 1)/2</math>, the polynomial <math>Q</math> is, in fact, a constant. This constant is one, because the product of the diagonal entries of <math>V</math> is <math>x_1 x_2^2\cdots x_n^n</math>, which is also the [[monomial]] that is obtained by taking the first term of all factors in <math>\textstyle \prod_{0\le i<j\le n} (x_j-x_i).</math> This proves that <math>Q=1,</math> and finishes the proof. :<math>\det(V)=\prod_{0\le i<j\le n} (x_j-x_i).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)