Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
WKB approximation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==An example== This example comes from the text of [[Carl M. Bender]] and [[Steven Orszag]].<ref name=":0" /> Consider the second-order homogeneous linear differential equation <math display="block"> \epsilon^2 \frac{d^2 y}{dx^2} = Q(x) y, </math> where <math>Q(x) \neq 0</math>. Substituting <math display="block">y(x) = \exp \left[\frac{1}{\delta} \sum_{n=0}^\infty \delta^n S_{n}(x)\right]</math> results in the equation <math display="block">\epsilon^2\left[\frac{1}{\delta^2} \left(\sum_{n=0}^\infty \delta^nS_{n}^{\prime}\right)^2 + \frac{1}{\delta} \sum_{n=0}^{\infty}\delta^n S_{n}^{\prime\prime}\right] = Q(x).</math> To [[leading-order|leading order]] in ''ϵ'' (assuming, for the moment, the series will be asymptotically consistent), the above can be approximated as <math display="block">\frac{\epsilon^2}{\delta^2} {S_{0}^{\prime}}^2 + \frac{2\epsilon^2}{\delta} S_{0}^{\prime} S_{1}^{\prime} + \frac{\epsilon^2}{\delta} S_{0}^{\prime\prime} = Q(x).</math> In the limit {{math|''δ'' → 0}}, the [[Method of dominant balance|dominant balance]] is given by <math display="block">\frac{\epsilon^2}{\delta^2} {S_{0}^{\prime}}^2 \sim Q(x).</math> So {{mvar|δ}} is proportional to ''ϵ''. Setting them equal and comparing powers yields <math display="block">\epsilon^0: \quad {S_{0}^{\prime}}^2 = Q(x),</math> which can be recognized as the [[eikonal equation]], with solution <math display="block">S_{0}(x) = \pm \int_{x_0}^x \sqrt{Q(x')}\,dx'.</math> Considering first-order powers of {{mvar|ϵ}} fixes <math display="block">\epsilon^1: \quad 2 S_{0}^{\prime} S_{1}^{\prime} + S_{0}^{\prime\prime} = 0.</math> This has the solution <math display="block">S_{1}(x) = -\frac{1}{4} \ln Q(x) + k_1,</math> where {{math|''k''<sub>1</sub>}} is an arbitrary constant. We now have a pair of approximations to the system (a pair, because {{math|''S''<sub>0</sub>}} can take two signs); the first-order WKB-approximation will be a linear combination of the two: <math display="block">y(x) \approx c_1 Q^{-\frac{1}{4}}(x) \exp\left[\frac{1}{\epsilon} \int_{x_0}^x \sqrt{Q(t)} \, dt\right] + c_2 Q^{-\frac{1}{4}}(x) \exp\left[-\frac{1}{\epsilon} \int_{x_0}^x\sqrt{Q(t)} \, dt\right].</math> Higher-order terms can be obtained by looking at equations for higher powers of {{mvar|δ}}. Explicitly, <math display="block"> 2S_{0}^{\prime} S_{n}^{\prime} + S^{\prime\prime}_{n-1} + \sum_{j=1}^{n-1}S^{\prime}_{j} S^{\prime}_{n-j} = 0</math> for {{math|''n'' ≥ 2}}. === Precision of the asymptotic series === The asymptotic series for {{math|''y''(''x'')}} is usually a [[divergent series]], whose general term {{math|''δ''<sup>''n''</sup> ''S''<sub>''n''</sub>(''x'')}} starts to increase after a certain value {{math|1=''n'' = ''n''<sub>max</sub>}}. Therefore, the smallest error achieved by the WKB method is at best of the order of the last included term. For the equation <math display="block"> \epsilon^2 \frac{d^2 y}{dx^2} = Q(x) y, </math> with {{math|''Q''(''x'') <0}} an analytic function, the value <math>n_\max</math> and the magnitude of the last term can be estimated as follows:<ref>{{cite journal| last=Winitzki |first=S. |year=2005 |arxiv=gr-qc/0510001 |title=Cosmological particle production and the precision of the WKB approximation |journal=Phys. Rev. D |volume=72 |issue=10 |pages=104011, 14 pp |doi=10.1103/PhysRevD.72.104011 |bibcode = 2005PhRvD..72j4011W |s2cid=119152049 }}</ref> <math display="block">n_\max \approx 2\epsilon^{-1} \left| \int_{x_0}^{x_{\ast}} \sqrt{-Q(z)}\,dz \right| , </math> <math display="block">\delta^{n_\max}S_{n_\max}(x_0) \approx \sqrt{\frac{2\pi}{n_\max}} \exp[-n_\max], </math> where <math>x_0</math> is the point at which <math>y(x_0)</math> needs to be evaluated and <math>x_{\ast}</math> is the (complex) turning point where <math>Q(x_{\ast}) = 0</math>, closest to <math>x = x_0</math>. The number {{math|''n''<sub>max</sub>}} can be interpreted as the number of oscillations between <math>x_0</math> and the closest turning point. If <math>\epsilon^{-1}Q(x)</math> is a slowly changing function, <math display="block">\epsilon\left| \frac{dQ}{dx} \right| \ll Q^2 , ^{\text{[might be }Q^{3/2}\text{?]}}</math> the number {{math|''n''<sub>max</sub>}} will be large, and the minimum error of the asymptotic series will be exponentially small.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)