Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wave power
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Airy equations === The first condition implies that the motion can be described by a [[velocity potential]] <math display="inline"> \phi(t,x,y,z)</math>:<ref>{{Cite book |title=Numerical modelling of wave energy converters : state-of-the-art techniques for single devices and arrays |date=2016 |first=Matt |last=Folley |isbn=978-0-12-803211-4 |publisher=Academic Press |location=London, UK |oclc=952708484}}</ref><math display="block"> {\vec{\nabla}\times\vec{u}=\vec{0}}\Leftrightarrow{\vec{u}=\vec{\nabla}\phi}\text{,}</math>which must satisfy the [[Laplace's equation|Laplace equation]],<math display="block"> \nabla^2\phi=0\text{.}</math>In an ideal flow, the viscosity is negligible and the only external force acting on the fluid is the earth gravity <math> \vec{F_\text{ext}}=(0,0,-\rho g)</math>. In those circumstances, the [[Navier–Stokes equations]] reduces to <math display="block">{\partial\vec\nabla\phi \over\partial t}+{1 \over2}\vec \nabla\bigl(\vec\nabla\phi\bigr)^2= -{1 \over \rho}\cdot\vec\nabla p +{1 \over \rho}\vec\nabla\bigl(\rho gz\bigr), </math>which integrates (spatially) to the [[Bernoulli Equation|Bernoulli conservation law]]:<math display="block">{\partial\phi \over\partial t}+{1 \over2}\bigl(\vec\nabla\phi\bigr)^2 +{1 \over \rho} p + gz=(\text{const})\text{.} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)