Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weak base
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==A typical pH problem== Calculate the pH and percentage protonation of a .20 M aqueous solution of pyridine, C<sub>5</sub>H<sub>5</sub>N. The K<sub>b</sub> for C<sub>5</sub>H<sub>5</sub>N is 1.8 x 10<sup>β9</sup>.<ref>{{cite web|url=http://www.kentchemistry.com/links/AcidsBases/pHWeakBases.htm|title=Calculations of weak bases|publisher=Mr Kent's Chemistry Page|access-date=2018-03-23}}</ref> First, write the proton transfer equilibrium: :<math>\mathrm{H_2O(l) + C_5H_5N(aq) \leftrightarrow C_5H_5NH^+ (aq) + OH^- (aq)}</math> :<math>K_b=\mathrm{[C_5H_5NH^+] [OH^-]\over [C_5H_5N]}</math> The equilibrium table, with all concentrations in moles per liter, is {| width:75%; height:200px border="1" |+ |-style="height:40px" ! !! C<sub>5</sub>H<sub>5</sub>N !! C<sub>5</sub>H<sub>6</sub>N<sup>+</sup> !! OH<sup>β</sup> |- ! initial normality | .20 || 0 || 0 |- ! change in normality | -x || +x || +x |- ! equilibrium normality | .20 -x || x || x |} {| width:75%; height:200px border="1" |- | Substitute the equilibrium molarities into the basicity constant | <math>K_b=\mathrm {1.8 \times 10^{-9}} = {x \times x \over .20-x}</math> |- | We can assume that x is so small that it will be meaningless by the time we use significant figures. | <math>\mathrm {1.8 \times 10^{-9}} \approx {x^2 \over .20}</math> |- | Solve for x. | <math>\mathrm x \approx \sqrt{.20 \times (1.8 \times 10^{-9})} = 1.9 \times 10^{-5}</math> |- | Check the assumption that x << .20 | <math>\mathrm 1.9 \times 10^{-5} \ll .20</math>; so the approximation is valid |- | Find pOH from pOH = -log [OH<sup>β</sup>] with [OH<sup>β</sup>]=x | <math>\mathrm pOH \approx -log(1.9 \times 10^{-5}) = 4.7 </math> |- | From pH = pK<sub>w</sub> - pOH, | <math>\mathrm pH \approx 14.00 - 4.7 = 9.3</math> |- | From the equation for percentage protonated with [HB<sup>+</sup>] = x and [B]<sub>initial</sub> = .20, | <math>\mathrm percentage \ protonated = {1.9 \times 10^{-5} \over .20} \times 100\% = .0095\% </math> |} This means .0095% of the pyridine is in the protonated form of C<sub>5</sub>H<sub>5</sub>NH<sup>+</sup>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)