Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wilson loop
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Order operator== Since temporal Wilson lines correspond to the configuration created by infinitely heavy stationary quarks, Wilson loop associated with a rectangular loop <math>\gamma</math> with two temporal components of length <math>T</math> and two spatial components of length <math>r</math>, can be interpreted as a [[quark]]-antiquark pair at fixed separation. Over large times the [[vacuum expectation value]] of the Wilson loop projects out the state with the [[ground state|minimum energy]], which is the [[potential energy|potential]] <math>V(r)</math> between the quarks.<ref>{{cite book|last=Rothe|first=H.J.|author-link=|date=2005|title=Lattice Gauge Theories: An Introduction|series=World Scientific Lecture Notes in Physics: Volume 43|url=https://library.oapen.org/handle/20.500.12657/50492|doi=10.1142/8229|location=|publisher=World Scientific Publishing|chapter=7|volume=82 |pages=95–108|isbn=978-9814365857}}</ref> The [[excited state]]s with energy <math>V(r)+\Delta E</math> are exponentially suppressed with time and so the expectation value goes as :<math> \langle W[\gamma]\rangle \sim e^{-TV(r)}(1+\mathcal O(e^{-T\Delta E})), </math> making the Wilson loop useful for calculating the potential between quark pairs. This potential must necessarily be a [[monotonic function|monotonically increasing]] and [[concave function]] of the quark separation.<ref>{{cite journal|last1=Seiler|first1=E.|authorlink1=|date=1978|title=Upper bound on the color-confining potential|url=https://link.aps.org/doi/10.1103/PhysRevD.18.482|journal=Phys. Rev. D|volume=18|issue=2|pages=482–483|doi=10.1103/PhysRevD.18.482|pmid=|arxiv=|bibcode=1978PhRvD..18..482S |s2cid=|access-date=|url-access=subscription}}</ref><ref>{{cite journal|last1=Bachas|first1=C.|authorlink1=|date=1986|title=Concavity of the quarkonium potential|url=https://link.aps.org/doi/10.1103/PhysRevD.33.2723|journal=Phys. Rev. D|volume=33|issue=9|pages=2723–2725|doi=10.1103/PhysRevD.33.2723|pmid=9956963|arxiv=|bibcode=1986PhRvD..33.2723B |s2cid=|access-date=|url-access=subscription}}</ref> Since spacelike Wilson loops are not fundamentally different from the temporal ones, the quark potential is really directly related to the pure Yang–Mills theory structure and is a phenomenon independent of the matter content.<ref>{{cite book|last=Greensite|first=J.|author-link=|date=2020|title=An Introduction to the Confinement Problem|edition=2|url=|doi=|location=|publisher=Springer|chapter=4|pages=37–40|isbn=978-3030515621}}</ref> [[Elitzur's theorem]] ensures that local non-gauge invariant operators cannot have a non-zero expectation values. Instead one must use non-local gauge invariant operators as order parameters for confinement. The Wilson loop is exactly such an order parameter in pure [[Yang–Mills theory]], where in the confining [[phase (matter)|phase]] its expectation value follows the area law<ref>{{cite book|last=Makeenko|first=Y.|date=2002|title=Methods of Contemporary Gauge Theory|series=Cambridge Monographs on Mathematical Physics|url=|doi=10.1017/CBO9780511535147|location=Cambridge|publisher=Cambridge University Press|chapter=6|pages=117–118|isbn=978-0521809115}}</ref> :<math> \langle W[\gamma]\rangle \sim e^{-aA[\gamma]} </math> for a loop that encloses an area <math>A[\gamma]</math>. This is motivated from the potential between infinitely heavy test quarks which in the confinement phase is expected to grow linearly <math>V(r) \sim \sigma r</math> where <math>\sigma</math> is known as the string tension. Meanwhile, in the [[Higgs phase]] the expectation value follows the perimeter law :<math> \langle W[\gamma]\rangle \sim e^{-bL[\gamma]}, </math> where <math>L[\gamma]</math> is the perimeter length of the loop and <math>b</math> is some constant. The area law of Wilson loops can be used to demonstrate confinement in certain low dimensional theories directly, such as for the [[Schwinger model]] whose confinement is driven by [[instanton]]s.<ref>{{cite book|last=Paranjape|first=M.|author-link=|date=2017|title=The Theory and Applications of Instanton Calculations|url=|doi=|location=|publisher=Cambridge University Press|chapter=9|page=168|isbn=978-1107155473}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)