Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Homeomorphisms=== Symmetric to the concept of a continuous map is an [[open map]], for which {{em|images}} of open sets are open. If an open map ''f'' has an [[inverse function]], that inverse is continuous, and if a continuous map ''g'' has an inverse, that inverse is open. Given a [[bijective]] function ''f'' between two topological spaces, the inverse function <math>f^{-1}</math> need not be continuous. A bijective continuous function with a continuous inverse function is called a {{em|[[homeomorphism]]}}. If a continuous bijection has as its [[Domain of a function|domain]] a [[compact space]] and its codomain is [[Hausdorff space|Hausdorff]], then it is a homeomorphism.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)