Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Convolution=== Under some circumstances, it is possible to define the [[convolution]] of a function with a distribution, or even the convolution of two distributions. Recall that if <math>f</math> and <math>g</math> are functions on <math>\R^n</math> then we denote by <math>f\ast g</math> {{em|the '''convolution''' of <math>f</math> and <math>g,</math>}} defined at <math>x \in \R^n</math> to be the integral <math display=block>(f \ast g)(x) := \int_{\R^n} f(x-y) g(y) \,dy = \int_{\R^n} f(y)g(x-y) \,dy</math> provided that the integral exists. If <math>1 \leq p, q, r \leq \infty</math> are such that <math display=inline>\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1</math> then for any functions <math>f \in L^p(\R^n)</math> and <math>g \in L^q(\R^n)</math> we have <math>f \ast g \in L^r(\R^n)</math> and <math>\|f\ast g\|_{L^r} \leq \|f\|_{L^p} \|g\|_{L^q}.</math>{{sfn|Trèves|2006|pp=278-283}} If <math>f</math> and <math>g</math> are continuous functions on <math>\R^n,</math> at least one of which has compact support, then <math>\operatorname{supp}(f \ast g) \subseteq \operatorname{supp} (f) + \operatorname{supp} (g)</math> and if <math>A\subseteq \R^n</math> then the value of <math>f\ast g</math> on <math>A</math> do {{em|not}} depend on the values of <math>f</math> outside of the [[Minkowski sum]] <math>A -\operatorname{supp} (g) = \{a-s : a\in A, s\in \operatorname{supp}(g)\}.</math>{{sfn|Trèves|2006|pp=278-283}} Importantly, if <math>g \in L^1(\R^n)</math> has compact support then for any <math>0 \leq k \leq \infty,</math> the convolution map <math>f \mapsto f \ast g</math> is continuous when considered as the map <math>C^k(\R^n) \to C^k(\R^n)</math> or as the map <math>C_c^k(\R^n) \to C_c^k(\R^n).</math>{{sfn|Trèves|2006|pp=278-283}} ====Translation and symmetry==== Given <math>a \in \R^n,</math> the translation operator <math>\tau_a</math> sends <math>f : \R^n \to \Complex</math> to <math>\tau_a f : \R^n \to \Complex,</math> defined by <math>\tau_a f(y) = f(y-a).</math> This can be extended by the transpose to distributions in the following way: given a distribution <math>T,</math> {{em|the '''translation''' of <math>T</math> by <math>a</math>}} is the distribution <math>\tau_a T : \mathcal{D}(\R^n) \to \Complex</math> defined by <math>\tau_a T(\phi) := \left\langle T, \tau_{-a} \phi \right\rangle.</math>{{sfn|Trèves|2006|pp=284-297}}<ref>See for example {{harvnb|Rudin|1991|loc=§6.29}}.</ref> Given <math>f : \R^n \to \Complex,</math> define the function <math>\tilde{f} : \R^n \to \Complex</math> by <math>\tilde{f}(x) := f(-x).</math> Given a distribution <math>T,</math> let <math>\tilde{T} : \mathcal{D}(\R^n) \to \Complex</math> be the distribution defined by <math>\tilde{T}(\phi) := T \left(\tilde{\phi}\right).</math> The operator <math>T \mapsto \tilde{T}</math> is called '''{{em|the symmetry with respect to the origin}}'''.{{sfn|Trèves|2006|pp=284-297}} ====Convolution of a test function with a distribution==== Convolution with <math>f \in \mathcal{D}(\R^n)</math> defines a linear map: <math display=block>\begin{alignat}{4} C_f : \,& \mathcal{D}(\R^n) && \to \,&& \mathcal{D}(\R^n) \\ & g && \mapsto\,&& f \ast g \\ \end{alignat}</math> which is [[continuous function|continuous]] with respect to the canonical [[LF space]] topology on <math>\mathcal{D}(\R^n).</math> Convolution of <math>f</math> with a distribution <math>T \in \mathcal{D}'(\R^n)</math> can be defined by taking the transpose of <math>C_f</math> relative to the duality pairing of <math>\mathcal{D}(\R^n)</math> with the space <math>\mathcal{D}'(\R^n)</math> of distributions.{{sfn|Trèves|2006|loc=Chapter 27}} If <math>f, g, \phi \in \mathcal{D}(\R^n),</math> then by [[Fubini's theorem]] <math display=block>\langle C_fg, \phi \rangle = \int_{\R^n}\phi(x)\int_{\R^n}f(x-y) g(y) \,dy \,dx = \left\langle g,C_{\tilde{f}}\phi \right\rangle.</math> Extending by continuity, the convolution of <math>f</math> with a distribution <math>T</math> is defined by <math display=block>\langle f \ast T, \phi \rangle = \left\langle T, \tilde{f} \ast \phi \right\rangle, \quad \text{ for all } \phi \in \mathcal{D}(\R^n).</math> An alternative way to define the convolution of a test function <math>f</math> and a distribution <math>T</math> is to use the translation operator <math>\tau_a.</math> The convolution of the compactly supported function <math>f</math> and the distribution <math>T</math> is then the function defined for each <math>x \in \R^n</math> by <math display=block>(f \ast T)(x) = \left\langle T, \tau_x \tilde{f} \right\rangle.</math> It can be shown that the convolution of a smooth, compactly supported function and a distribution is a smooth function. If the distribution <math>T</math> has compact support, and if <math>f</math> is a polynomial (resp. an exponential function, an analytic function, the restriction of an entire analytic function on <math>\Complex^n</math> to <math>\R^n,</math> the restriction of an entire function of exponential type in <math>\Complex^n</math> to <math>\R^n</math>), then the same is true of <math>T \ast f.</math>{{sfn|Trèves|2006|pp=284-297}} If the distribution <math>T</math> has compact support as well, then <math>f\ast T</math> is a compactly supported function, and the [[Titchmarsh convolution theorem]] {{harvtxt|Hörmander|1983|loc=Theorem 4.3.3}} implies that: <math display=block>\operatorname{ch}(\operatorname{supp}(f \ast T)) = \operatorname{ch}(\operatorname{supp}(f)) + \operatorname{ch} (\operatorname{supp}(T))</math> where <math>\operatorname{ch}</math> denotes the [[convex hull]] and <math>\operatorname{supp}</math> denotes the support. ====Convolution of a smooth function with a distribution==== Let <math>f \in C^\infty(\R^n)</math> and <math>T \in \mathcal{D}'(\R^n)</math> and assume that at least one of <math>f</math> and <math>T</math> has compact support. The '''{{em|convolution}}''' of <math>f</math> and <math>T,</math> denoted by <math>f \ast T</math> or by <math>T \ast f,</math> is the smooth function:{{sfn|Trèves|2006|pp=284-297}} <math display=block>\begin{alignat}{4} f \ast T : \,& \R^n && \to \,&& \Complex \\ & x && \mapsto\,&& \left\langle T, \tau_x \tilde{f} \right\rangle \\ \end{alignat}</math> satisfying for all <math>p \in \N^n</math>: <math display=block>\begin{align} &\operatorname{supp}(f \ast T) \subseteq \operatorname{supp}(f)+ \operatorname{supp}(T) \\[6pt] &\text{ for all } p \in \N^n: \quad \begin{cases}\partial^p \left\langle T, \tau_x \tilde{f} \right\rangle = \left\langle T, \partial^p \tau_x \tilde{f} \right\rangle \\ \partial^p (T \ast f) = (\partial^p T) \ast f = T \ast (\partial^p f). \end{cases} \end{align}</math> Let <math>M</math> be the map <math>f \mapsto T \ast f</math>. If <math>T</math> is a distribution, then <math>M</math> is continuous as a map <math>\mathcal{D}(\R^n) \to C^\infty(\R^n)</math>. If <math>T</math> also has compact support, then <math>M</math> is also continuous as the map <math>C^\infty(\R^n) \to C^\infty(\R^n)</math> and continuous as the map <math>\mathcal{D}(\R^n) \to \mathcal{D}(\R^n).</math>{{sfn|Trèves|2006|pp=284-297}} If <math>L : \mathcal{D}(\R^n) \to C^\infty(\R^n)</math> is a continuous linear map such that <math>L \partial^\alpha \phi = \partial^\alpha L \phi</math> for all <math>\alpha</math> and all <math>\phi \in \mathcal{D}(\R^n)</math> then there exists a distribution <math>T \in \mathcal{D}'(\R^n)</math> such that <math>L \phi = T \circ \phi</math> for all <math>\phi \in \mathcal{D}(\R^n).</math>{{sfn|Rudin|1991|pp=149-181}} '''Example.'''{{sfn|Rudin|1991|pp=149-181}} Let <math>H</math> be the [[Heaviside step function|Heaviside function]] on <math>\R.</math> For any <math>\phi \in \mathcal{D}(\R),</math> <math display=block>(H \ast \phi)(x) = \int_{-\infty}^x \phi(t) \, dt.</math> Let <math>\delta</math> be the Dirac measure at 0 and let <math>\delta'</math> be its derivative as a distribution. Then <math>\delta' \ast H = \delta</math> and <math>1 \ast \delta' = 0.</math> Importantly, the associative law fails to hold: <math display=block>1 = 1 \ast \delta = 1 \ast (\delta' \ast H ) \neq (1 \ast \delta') \ast H = 0 \ast H = 0.</math> ====Convolution of distributions==== It is also possible to define the convolution of two distributions <math>S</math> and <math>T</math> on <math>\R^n,</math> provided one of them has compact support. Informally, to define <math>S \ast T</math> where <math>T</math> has compact support, the idea is to extend the definition of the convolution <math>\,\ast\,</math> to a linear operation on distributions so that the associativity formula <math display=block>S \ast (T \ast \phi) = (S \ast T) \ast \phi</math> continues to hold for all test functions <math>\phi.</math><ref>{{harvnb|Hörmander|1983|loc=§IV.2}} proves the uniqueness of such an extension.</ref> It is also possible to provide a more explicit characterization of the convolution of distributions.{{sfn|Trèves|2006|loc=Chapter 27}} Suppose that <math>S</math> and <math>T</math> are distributions and that <math>S</math> has compact support. Then the linear maps <math display=block>\begin{alignat}{9} \bullet \ast \tilde{S} : \,& \mathcal{D}(\R^n) && \to \,&& \mathcal{D}(\R^n) && \quad \text{ and } \quad && \bullet \ast \tilde{T} : \,&& \mathcal{D}(\R^n) && \to \,&& \mathcal{D}(\R^n) \\ & f && \mapsto\,&& f \ast \tilde{S} && && && f && \mapsto\,&& f \ast \tilde{T} \\ \end{alignat}</math> are continuous. The transposes of these maps: <math display=block>{}^{t}\left(\bullet \ast \tilde{S}\right) : \mathcal{D}'(\R^n) \to \mathcal{D}'(\R^n) \qquad {}^{t}\left(\bullet \ast \tilde{T}\right) : \mathcal{E}'(\R^n) \to \mathcal{D}'(\R^n)</math> are consequently continuous and it can also be shown that{{sfn|Trèves|2006|pp=284-297}} <math display=block>{}^{t}\left(\bullet \ast \tilde{S}\right)(T) = {}^{t}\left(\bullet \ast \tilde{T}\right)(S).</math> This common value is called {{em|the '''convolution''' of <math>S</math> and <math>T</math>}} and it is a distribution that is denoted by <math>S \ast T</math> or <math>T \ast S.</math> It satisfies <math>\operatorname{supp} (S \ast T) \subseteq \operatorname{supp}(S) + \operatorname{supp}(T).</math>{{sfn|Trèves|2006|pp=284-297}} If <math>S</math> and <math>T</math> are two distributions, at least one of which has compact support, then for any <math>a \in \R^n,</math> <math>\tau_a(S \ast T) = \left(\tau_a S\right) \ast T = S \ast \left(\tau_a T\right).</math>{{sfn|Trèves|2006|pp=284-297}} If <math>T</math> is a distribution in <math>\R^n</math> and if <math>\delta</math> is a [[Dirac measure]] then <math>T \ast \delta = T = \delta \ast T</math>;{{sfn|Trèves|2006|pp=284-297}} thus <math>\delta</math> is the [[identity element]] of the convolution operation. Moreover, if <math>f</math> is a function then <math>f \ast \delta^{\prime} = f^{\prime} = \delta^{\prime} \ast f</math> where now the associativity of convolution implies that <math>f^{\prime} \ast g = g^{\prime} \ast f</math> for all functions <math>f</math> and <math>g.</math> Suppose that it is <math>T</math> that has compact support. For <math>\phi \in \mathcal{D}(\R^n)</math> consider the function <math display=block>\psi(x) = \langle T, \tau_{-x} \phi \rangle.</math> It can be readily shown that this defines a smooth function of <math>x,</math> which moreover has compact support. The convolution of <math>S</math> and <math>T</math> is defined by <math display=block>\langle S \ast T, \phi \rangle = \langle S, \psi \rangle.</math> This generalizes the classical notion of [[convolution]] of functions and is compatible with differentiation in the following sense: for every multi-index <math>\alpha.</math> <math display=block>\partial^\alpha(S \ast T) = (\partial^\alpha S) \ast T = S \ast (\partial^\alpha T).</math> The convolution of a finite number of distributions, all of which (except possibly one) have compact support, is [[associative]].{{sfn|Trèves|2006|pp=284-297}} This definition of convolution remains valid under less restrictive assumptions about <math>S</math> and <math>T.</math><ref>See for instance {{harvnb|Gel'fand|Shilov|1966–1968|loc=v. 1, pp. 103–104}} and {{harvnb|Benedetto|1997|loc=Definition 2.5.8}}.</ref> The convolution of distributions with compact support induces a continuous bilinear map <math>\mathcal{E}' \times \mathcal{E}' \to \mathcal{E}'</math> defined by <math>(S,T) \mapsto S * T,</math> where <math>\mathcal{E}'</math> denotes the space of distributions with compact support.{{sfn|Trèves|2006|p=423}} However, the convolution map as a function <math>\mathcal{E}' \times \mathcal{D}' \to \mathcal{D}'</math> is {{em|not}} continuous{{sfn|Trèves|2006|p=423}} although it is separately continuous.{{sfn|Trèves|2006|p=294}} The convolution maps <math>\mathcal{D}(\R^n) \times \mathcal{D}' \to \mathcal{D}'</math> and <math>\mathcal{D}(\R^n) \times \mathcal{D}' \to \mathcal{D}(\R^n)</math> given by <math>(f, T) \mapsto f * T</math> both {{em|fail}} to be continuous.{{sfn|Trèves|2006|p=423}} Each of these non-continuous maps is, however, [[separately continuous]] and [[hypocontinuous]].{{sfn|Trèves|2006|p=423}} ====Convolution versus multiplication==== In general, [[Regularization (physics)|regularity]] is required for multiplication products, and [[Principle of locality|locality]] is required for convolution products. It is expressed in the following extension of the [[Convolution theorem|Convolution Theorem]] which guarantees the existence of both convolution and multiplication products. Let <math>F(\alpha) = f \in \mathcal{O}'_C</math> be a rapidly decreasing tempered distribution or, equivalently, <math>F(f) = \alpha \in \mathcal{O}_M</math> be an ordinary (slowly growing, smooth) function within the space of tempered distributions and let <math>F</math> be the normalized (unitary, ordinary frequency) [[Fourier transform]].<ref>{{cite book|last=Folland|first=G.B.|title=Harmonic Analysis in Phase Space|publisher=Princeton University Press|publication-place=Princeton, NJ|year=1989}}</ref> Then, according to {{harvtxt|Schwartz|1951}}, <math display=block>F(f * g) = F(f) \cdot F(g) \qquad \text{ and } \qquad F(\alpha \cdot g) = F(\alpha) * F(g)</math> hold within the space of tempered distributions.<ref>{{cite book|last=Horváth|first=John|author-link = John Horvath (mathematician)|title=Topological Vector Spaces and Distributions|publisher=Addison-Wesley Publishing Company|publication-place=Reading, MA|year=1966}}</ref><ref>{{cite book|last=Barros-Neto|first=José|title=An Introduction to the Theory of Distributions|publisher=Dekker|publication-place=New York, NY|year=1973}}</ref><ref>{{cite book|last=Petersen|first=Bent E.|title=Introduction to the Fourier Transform and Pseudo-Differential Operators|publisher=Pitman Publishing|publication-place=Boston, MA|year=1983}}</ref> In particular, these equations become the [[Poisson summation formula|Poisson Summation Formula]] if <math>g \equiv \operatorname{\text{Ш}}</math> is the [[Dirac comb|Dirac Comb]].<ref>{{cite book|last=Woodward|first=P.M.|title=Probability and Information Theory with Applications to Radar|publisher=Pergamon Press|publication-place=Oxford, UK|year=1953}}</ref> The space of all rapidly decreasing tempered distributions is also called the space of {{em|convolution operators}} <math>\mathcal{O}'_C</math> and the space of all ordinary functions within the space of tempered distributions is also called the space of {{em|multiplication operators}} <math>\mathcal{O}_M.</math> More generally, <math>F(\mathcal{O}'_C) = \mathcal{O}_M</math> and <math>F(\mathcal{O}_M) = \mathcal{O}'_C.</math>{{sfn|Trèves|2006|pp=318-319}}<ref>{{cite book|last1=Friedlander|first1=F.G.|last2=Joshi|first2=M.S.|title=Introduction to the Theory of Distributions|publisher=Cambridge University Press|publication-place=Cambridge, UK|year=1998}}</ref> A particular case is the [[Paley–Wiener theorem#Schwartz's Paley–Wiener theorem|Paley-Wiener-Schwartz Theorem]] which states that <math>F(\mathcal{E}') = \operatorname{PW}</math> and <math>F(\operatorname{PW} ) = \mathcal{E}'.</math> This is because <math>\mathcal{E}' \subseteq \mathcal{O}'_C</math> and <math>\operatorname{PW} \subseteq \mathcal{O}_M.</math> In other words, compactly supported tempered distributions <math>\mathcal{E}'</math> belong to the space of {{em|convolution operators}} <math>\mathcal{O}'_C</math> and Paley-Wiener functions <math>\operatorname{PW},</math> better known as [[Bandlimiting|bandlimited functions]], belong to the space of {{em|multiplication operators}} <math>\mathcal{O}_M.</math>{{sfn|Schwartz|1951}} For example, let <math>g \equiv \operatorname{\text{Ш}} \in \mathcal{S}'</math> be the Dirac comb and <math>f \equiv \delta \in \mathcal{E}'</math> be the [[Dirac delta function|Dirac delta]];then <math>\alpha \equiv 1 \in \operatorname{PW}</math> is the function that is constantly one and both equations yield the [[Dirac comb#Dirac-comb identity|Dirac-comb identity]]. Another example is to let <math>g</math> be the Dirac comb and <math>f \equiv \operatorname{rect} \in \mathcal{E}'</math> be the [[rectangular function]]; then <math>\alpha \equiv \operatorname{sinc} \in \operatorname{PW}</math> is the [[sinc function]] and both equations yield the [[Nyquist–Shannon sampling theorem|Classical Sampling Theorem]] for suitable <math>\operatorname{rect}</math> functions. More generally, if <math>g</math> is the Dirac comb and <math>f \in \mathcal{S} \subseteq \mathcal{O}'_C \cap \mathcal{O}_M</math> is a [[Smoothness|smooth]] [[window function]] ([[Schwartz space|Schwartz function]]), for example, the [[Gaussian function|Gaussian]], then <math>\alpha \in \mathcal{S}</math> is another smooth window function (Schwartz function). They are known as [[mollifier]]s, especially in [[partial differential equation]]s theory, or as [[Regularization (mathematics)|regularizers]] in [[Regularization (physics)|physics]] because they allow turning [[generalized function]]s into [[Function (mathematics)|regular functions]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)