Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lambda calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Standard terms === Certain terms have commonly accepted names:<ref>{{cite web |last1=Ker |first1=Andrew D. |title=Lambda Calculus and Types |url=https://www.cs.ox.ac.uk/andrew.ker/docs/lambdacalculus-lecture-notes-ht2009.pdf#page=18|page=6 |access-date=14 January 2022}}</ref><ref>{{cite book |last1=Dezani-Ciancaglini |first1=Mariangiola |last2=Ghilezan |first2=Silvia |title=Rewriting and Typed Lambda Calculi |chapter=Preciseness of Subtyping on Intersection and Union Types |series=Lecture Notes in Computer Science |date=2014 |volume=8560 |page=196 |doi=10.1007/978-3-319-08918-8_14|hdl=2318/149874 |isbn=978-3-319-08917-1 |chapter-url=http://www.di.unito.it/~dezani/papers/dg14.pdf#page=3 |access-date=14 January 2022}}</ref><ref>{{cite journal |last1=Forster |first1=Yannick |last2=Smolka |first2=Gert |title=Call-by-Value Lambda Calculus as a Model of Computation in Coq |journal=Journal of Automated Reasoning |date=August 2019 |volume=63 |issue=2 |pages=393–413 |doi=10.1007/s10817-018-9484-2 |s2cid=53087112 |url=https://www.ps.uni-saarland.de/Publications/documents/ForsterSmolka_2018_Computability-JAR.pdf#page=4 |access-date=14 January 2022}}</ref> : {{anchor|I}} {{Mono|1='''I''' := λ''x''.''x''}} : {{anchor|S}} {{Mono|1='''S''' := λ''x''.λ''y''.λ''z''.''x'' ''z'' (''y'' ''z'')}} : {{anchor|K}} {{Mono|1='''K''' := λ''x''.λ''y''.''x''}} : {{anchor|B}} {{Mono|1='''B''' := λ''x''.λ''y''.λ''z''.''x'' (''y'' ''z'')}} : {{anchor|C}} {{Mono|1='''C''' := λ''x''.λ''y''.λ''z''.''x'' ''z'' ''y''}} : {{anchor|W}} {{Mono|1='''W''' := λ''x''.λ''y''.''x'' ''y'' ''y''}} : {{anchor|omega}} {{Mono|1='''ω''' or '''Δ''' or '''U''' := λ''x''.''x'' ''x''}} : {{anchor|Omega}} {{Mono|1='''Ω''' := '''ω ω'''}} {{Mono|'''I'''}} is the identity function. {{Mono|'''SK'''}} and {{Mono|'''BCKW'''}} form complete [[combinator calculus]] systems that can express any lambda term - see [[#Abstraction elimination|the next section]]. {{Mono|'''Ω'''}} is {{Mono|'''UU'''}}, the smallest term that has no normal form. {{Mono|'''YI'''}} is another such term. {{Mono|'''Y'''}} is standard and defined [[#Y|above]], and can also be defined as {{Mono|'''Y'''{{=}}'''BU(CBU)'''}}, so that {{Mono|'''Y'''g{{=}}g('''Y'''g)}}. {{Mono|TRUE}} and {{Mono|FALSE}} defined [[#Logic and predicates|above]] are commonly abbreviated as {{Mono|'''T'''}} and {{Mono|'''F'''}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)