Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propositional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Semantic proof via truth tables == {{See also|Truth table}} Taking advantage of the semantic concept of validity (truth in every interpretation), it is possible to prove a formula's validity by using a [[truth table]], which gives every possible interpretation (assignment of truth values to variables) of a formula.<ref name=":27" /><ref name=":8" /><ref name="BostockIntermediate" /> If, and only if, all the lines of a truth table come out true, the formula is semantically valid (true in every interpretation).<ref name=":27" /><ref name=":8" /> Further, if (and only if) <math>\neg\varphi</math> is valid, then <math>\varphi</math> is inconsistent.<ref name=":30"/><ref name=":31"/><ref name=":32"/> For instance, this table shows that "{{math|''p'' β (''q'' β¨ ''r'' β (''r'' β Β¬''p''))}}" is not valid:<ref name=":8" /> {| class="wikitable" style="margin:1em auto; text-align:center;" |- ! ''p'' ! ''q'' ! ''r'' ! {{math|''q'' β¨ ''r''}} ! {{math|''r'' β Β¬''p''}} ! {{math|''q'' β¨ ''r'' β (''r'' β Β¬''p'')}} ! {{math|''p'' β (''q'' β¨ ''r'' β (''r'' β Β¬''p''))}} |- | {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Failure|}}F || {{Failure|}}F || {{Failure|}}F |- | {{Success|}}T || {{Success|}}T || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Success|}}T || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Failure|}}F || {{Failure|}}F || {{Failure|}}F |- | {{Success|}}T || {{Failure|}}F || {{Failure|}}F || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Failure|}}F || {{Success|}}T || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Failure|}}F || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Failure|}}F || {{Failure|}}F || {{Failure|}}F || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T |} The computation of the last column of the third line may be displayed as follows:<ref name=":8" /> {| class="wikitable" style="margin:1em auto; text-align:center;" |- ! p ! β ! (q ! β¨ ! r ! β ! (r ! β ! Β¬ ! p)) |- | T | β | (F | β¨ | T | β | (T | β | Β¬ | T)) |- | T | β | ( | T | | β | (T | β | F | )) |- | T | β | ( | T | | β | | F | | ) |- | T | β | | | | F | | | | |- | | F | | | | | | | | |- | T | F | F | T | T | F | T | F | F | T |} Further, using the theorem that <math>\varphi \models \psi</math> if, and only if, <math>(\varphi \to \psi)</math> is valid,<ref name="metalogic" /><ref name=":20" /> we can use a truth table to prove that a formula is a semantic consequence of a set of formulas: <math>\{\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n\} \models \psi</math> if, and only if, we can produce a truth table that comes out all true for the formula <math>\left( \left(\bigwedge _{i=1}^n \varphi_i \right) \rightarrow \psi \right)</math> (that is, if <math>\models \left( \left(\bigwedge _{i=1}^n \varphi_i \right) \rightarrow \psi \right)</math>).<ref name="ms60"/><ref name="ms61"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)