Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Numerical algorithms == A classical algorithm, in use prior to about 1930, proceeds by applying the [[Euler-Maclaurin formula]] to obtain, for ''n'' and ''m'' positive integers, :<math>\zeta(s) = \sum_{j=1}^{n-1}j^{-s} + \tfrac12 n^{-s} + \frac{n^{1-s}}{s-1} + \sum_{k=1}^m T_{k,n}(s) + E_{m,n}(s)</math> where, letting <math>B_{2k}</math> denote the indicated [[Bernoulli number]], :<math>T_{k,n}(s) = \frac{B_{2k}}{(2k)!} n^{1-s-2k}\prod_{j=0}^{2k-2}(s+j)</math> and the error satisfies :<math>|E_{m,n}(s)| < \left|\frac{s+2m+1}{\sigma + 2m + 1}T_{m+1,n}(s)\right|,</math> with ''σ'' = Re(''s'').<ref>{{cite journal|mr=0961614 |author1-link=Odlyzko|author2-link=Schönhage|last1=Odlyzko|first1= A. M.|last2= Schönhage|first2= A. |title=Fast algorithms for multiple evaluations of the Riemann zeta function |journal=Trans. Amer. Math. Soc.|volume= 309 |year=1988|issue= 2|pages= 797–809 |doi=10.2307/2000939|jstor=2000939|doi-access=free}}. </ref> A modern numerical algorithm is the [[Odlyzko–Schönhage algorithm]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)