Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Root system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== *{{citation|first=J.F.|last=Adams|author-link=Frank Adams|title=Lectures on Lie groups|publisher= University of Chicago Press|year= 1983|isbn=0-226-00530-5}} *{{citation|first=Nicolas|last= Bourbaki|author-link=Nicolas Bourbaki| title=Lie groups and Lie algebras, Chapters 4–6 (translated from the 1968 French original by Andrew Pressley)|series= Elements of Mathematics|publisher= Springer-Verlag|year= 2002|isbn=3-540-42650-7}}. The classic reference for root systems. *{{cite book |title=Elements of the History of Mathematics |url=https://archive.org/details/elementsofhistor0000bour |url-access=registration |last1=Bourbaki |first1=Nicolas |author-link1=Nicolas Bourbaki |year= 1998 |publisher=Springer |isbn=3540647678 }} *{{citation|first=A.J. |last=Coleman|title=The greatest mathematical paper of all time|journal=The Mathematical Intelligencer|volume=11|date=Summer 1989|issue=3|pages=29–38|doi=10.1007/bf03025189|s2cid=35487310 }} *{{Citation| last=Hall|first=Brian C.|title=Lie groups, Lie algebras, and representations: An elementary introduction|edition=2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015|isbn=978-3319134666}} *{{cite book |title=Introduction to Lie algebras and Representation Theory |last=Humphreys |first=James |author-link1=James E. Humphreys |year=1972 |publisher=Springer |isbn=0387900535 |url-access=registration |url=https://archive.org/details/introductiontoli00jame }} *{{cite book |title=Reflection Groups and Coxeter Groups |last1=Humphreys |first1=James |year=1992 |publisher=Cambridge University Press |isbn=0521436133 }} *{{cite journal |last1=Killing |first1=Wilhelm |author1-link=Wilhelm Killing |title=Die Zusammensetzung der stetigen endlichen Transformationsgruppen |journal=[[Mathematische Annalen]] |url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0031&DMDID=DMDLOG_0026&L=1 |volume=31 |issue=2 |date=June 1888 |pages=252–290 |doi=10.1007/BF01211904|s2cid=120501356 |archive-url=https://web.archive.org/web/20160305074126/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0031&DMDID=DMDLOG_0026&L=1 |archive-date=2016-03-05 }} **{{cite journal |last1=Killing |first1=Wilhelm |author1-mask=1 |title=Part 2 |journal= Math. Ann. |volume=33 |issue=1 |date=March 1888 |pages=1–48 |doi=10.1007/BF01444109|s2cid=124198118 |url=https://zenodo.org/record/1428182 }} **{{cite journal |last1=Killing |first1=Wilhelm |author1-mask=1 |title=Part 3 |journal= Math. Ann. |url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0034&DMDID=DMDLOG_0009&L=1 |volume=34 |issue=1 |date=March 1889 |pages=57–122 |doi=10.1007/BF01446792|s2cid=179177899 |archive-url=https://web.archive.org/web/20150221152955/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0034&DMDID=DMDLOG_0009&L=1 |archive-date=2015-02-21 }} **{{cite journal |last1=Killing |first1=Wilhelm |author1-mask=1 |title=Part 4 |journal= Math. Ann. |volume=36 |issue=2 |date=June 1890 |pages=161–189 |doi=10.1007/BF01207837|s2cid=179178061 |url=https://zenodo.org/record/1704882 }} *{{cite book |author-link=Victor Kac |first1=Victor G. |last1=Kac |title=Infinite-Dimensional Lie Algebras |url=https://books.google.com/books?id=kuEjSb9teJwC |year=1990 |publisher=Cambridge University Press |isbn=978-0-521-46693-6 |edition=3rd}} *{{cite book |title=Linear Algebraic Groups |edition=2nd |last1=Springer |first1=T.A. |year=1998 |publisher=Birkhäuser |isbn=0817640215 }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)