Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Streams=== Infinite sequences of [[numerical digit|digits]] (or [[character (computing)|characters]]) drawn from a [[finite set|finite]] [[alphabet (computer science)|alphabet]] are of particular interest in [[theoretical computer science]]. They are often referred to simply as ''sequences'' or ''[[Stream (computing)|streams]]'', as opposed to finite ''[[String (computer science)#Formal theory|strings]]''. Infinite binary sequences, for instance, are infinite sequences of [[bit]]s (characters drawn from the alphabet {0, 1}). The set ''C'' = {0, 1}<sup>β</sup> of all infinite binary sequences is sometimes called the [[Cantor space]]. An infinite binary sequence can represent a [[formal language]] (a set of strings) by setting the ''n'' th bit of the sequence to 1 if and only if the ''n'' th string (in [[shortlex order]]) is in the language. This representation is useful in the [[Cantor's diagonal argument|diagonalization method]] for proofs.<ref name=Oflazer2011>{{cite web|last1=Oflazer|first1=Kemal|title=FORMAL LANGUAGES, AUTOMATA AND COMPUTATION: DECIDABILITY|url=http://www.andrew.cmu.edu/user/ko/pdfs/lecture-15.pdf|website=cmu.edu|publisher=Carnegie-Mellon University|access-date=24 April 2015|archive-date=29 May 2015|archive-url=https://web.archive.org/web/20150529101719/http://www.andrew.cmu.edu/user/ko/pdfs/lecture-15.pdf|url-status=live}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)