Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== If {{mvar|F}} is a [[quadratic form]] in {{mvar|n}} variables, then the theta function associated with {{mvar|F}} is :<math>\theta_F (z)= \sum_{m\in \Z^n} e^{2\pi izF(m)}</math> with the sum extending over the [[lattice (group)|lattice]] of integers <math>\mathbb{Z}^n</math>. This theta function is a [[modular form]] of weight {{math|{{sfrac|''n''|2}}}} (on an appropriately defined subgroup) of the [[modular group]]. In the Fourier expansion, :<math>\hat{\theta}_F (z) = \sum_{k=0}^\infty R_F(k) e^{2\pi ikz},</math> the numbers {{math|''R<sub>F</sub>''(''k'')}} are called the ''representation numbers'' of the form. ===Theta series of a Dirichlet character=== For {{mvar|χ}} a primitive [[Dirichlet character]] modulo {{mvar|q}} and {{math|''ν'' {{=}} {{sfrac|1 − ''χ''(−1)|2}}}} then :<math>\theta_\chi(z) = \frac12\sum_{n=-\infty}^\infty \chi(n) n^\nu e^{2i \pi n^2 z}</math> is a weight {{math|{{sfrac|1|2}} + ''ν''}} modular form of level {{math|4''q''<sup>2</sup>}} and character :<math>\chi(d) \left(\frac{-1}{d}\right)^\nu,</math> which means<ref>Shimura, On modular forms of half integral weight</ref> :<math>\theta_\chi\left(\frac{az+b}{cz+d}\right) = \chi(d) \left(\frac{-1}{d}\right)^\nu \left(\frac{\theta_1\left(\frac{az+b}{cz+d}\right)}{\theta_1(z)}\right)^{1+2\nu}\theta_\chi(z)</math> whenever :<math>a,b,c,d\in \Z^4, ad-bc=1,c \equiv 0 \bmod 4 q^2.</math> ===Ramanujan theta function=== {{further|Ramanujan theta function|mock theta function}} ===Riemann theta function=== Let :<math>\mathbb{H}_n=\left\{F\in M(n,\Complex) \,\big|\, F=F^\mathsf{T} \,,\, \operatorname{Im} F >0 \right\}</math> be the set of [[symmetric]] square [[matrix (mathematics)|matrices]] whose imaginary part is [[Positive-definite matrix|positive definite]]. <math>\mathbb{H}_n</math> is called the [[Siegel upper half-space]] and is the multi-dimensional analog of the [[upper half-plane]]. The {{mvar|n}}-dimensional analogue of the [[modular group]] is the [[symplectic group]] {{math|Sp(2''n'',<math>\mathbb{Z}</math>)}}; for {{math|''n'' {{=}} 1}}, {{math|Sp(2,<math>\mathbb{Z}</math>) {{=}} SL(2,<math>\mathbb{Z}</math>)}}. The {{mvar|n}}-dimensional analogue of the [[congruence subgroup]]s is played by :<math>\ker \big\{\operatorname{Sp}(2n,\Z)\to \operatorname{Sp}(2n,\Z/k\Z) \big\}.</math> Then, given {{math|''τ'' ∈ <math>\mathbb{H}_n</math>}}, the '''Riemann theta function''' is defined as :<math>\theta (z,\tau)=\sum_{m\in \Z^n} \exp\left(2\pi i \left(\tfrac12 m^\mathsf{T} \tau m +m^\mathsf{T} z \right)\right). </math> Here, {{math|''z'' ∈ <math>\mathbb{C}^n</math>}} is an {{mvar|n}}-dimensional complex vector, and the superscript '''T''' denotes the [[transpose]]. The Jacobi theta function is then a special case, with {{math|''n'' {{=}} 1}} and {{math|''τ'' ∈ <math>\mathbb{H}</math>}} where {{math|<math>\mathbb{H}</math>}} is the [[upper half-plane]]. One major application of the Riemann theta function is that it allows one to give explicit formulas for meromorphic functions on compact [[Riemann surface]]s, as well as other auxiliary objects that figure prominently in their function theory, by taking {{mvar|τ}} to be the period matrix with respect to a canonical basis for its first [[Homology (mathematics)|homology group]]. The Riemann theta converges absolutely and uniformly on compact subsets of <math>\mathbb{C}^n \times \mathbb{H}_n</math>. The functional equation is :<math>\theta (z+a+\tau b, \tau) = \exp\left( 2\pi i \left(-b^\mathsf{T}z-\tfrac12 b^\mathsf{T}\tau b\right)\right) \theta (z,\tau)</math> which holds for all vectors {{math|''a'', ''b'' ∈ <math>\mathbb{Z}^n</math>}}, and for all {{math|''z'' ∈ <math>\mathbb{C}^n</math>}} and {{math|''τ'' ∈ <math>\mathbb{H}_n</math>}}. ===Poincaré series=== The [[Poincaré series (modular form)|Poincaré series]] generalizes the theta series to automorphic forms with respect to arbitrary [[Fuchsian group]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)