Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Variance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Population variance=== In general, the '''''population variance''''' of a ''finite'' [[statistical population|population]] of size {{mvar|N}} with values {{math|''x''<sub>''i''</sub>}} is given by <math display="block">\begin{align} \sigma^2 &= \frac{1}{N} \sum_{i=1}^N {\left(x_i - \mu\right)}^2 = \frac{1}{N} \sum_{i=1}^N \left(x_i^2 - 2 \mu x_i + \mu^2 \right) \\[5pt] &= \left(\frac{1}{N} \sum_{i=1}^N x_i^2\right) - 2\mu \left(\frac{1}{N} \sum_{i=1}^N x_i\right) + \mu^2 \\[5pt] &= \operatorname{E}[x_i^2] - \mu^2 \end{align}</math> where the population mean is <math display="inline">\mu = \operatorname{E}[x_i] = \frac 1N \sum_{i=1}^N x_i </math> and <math display="inline">\operatorname{E}[x_i^2] = \left(\frac{1}{N} \sum_{i=1}^N x_i^2\right) </math>, where <math display="inline">\operatorname{E} </math> is the [[Expected value|expectation value]] operator. The population variance can also be computed using<ref>{{cite conference|author=Yuli Zhang |author2=Huaiyu Wu |author3=Lei Cheng |date=June 2012|title=Some new deformation formulas about variance and covariance|conference=Proceedings of 4th International Conference on Modelling, Identification and Control(ICMIC2012)|pages=987β992}}</ref> <math display="block">\sigma^2 = \frac {1} {N^2}\sum_{i<j}\left( x_i-x_j \right)^2 = \frac{1}{2N^2} \sum_{i, j=1}^N\left( x_i-x_j \right)^2.</math> (The right side has duplicate terms in the sum while the middle side has only unique terms to sum.) This is true because <math display="block">\begin{align} &\frac{1}{2N^2} \sum_{i, j=1}^N {\left( x_i - x_j \right)}^2 \\[5pt] ={} &\frac{1}{2N^2} \sum_{i, j=1}^N \left( x_i^2 - 2x_i x_j + x_j^2 \right) \\[5pt] ={} &\frac{1}{2N} \sum_{j=1}^N \left(\frac{1}{N} \sum_{i=1}^N x_i^2\right) - \left(\frac{1}{N} \sum_{i=1}^N x_i\right) \left(\frac{1}{N} \sum_{j=1}^N x_j\right) + \frac{1}{2N} \sum_{i=1}^N \left(\frac{1}{N} \sum_{j=1}^N x_j^2\right) \\[5pt] ={} &\frac{1}{2} \left( \sigma^2 + \mu^2 \right) - \mu^2 + \frac{1}{2} \left( \sigma^2 + \mu^2 \right) \\[5pt] ={} &\sigma^2. \end{align}</math> The population variance matches the variance of the generating probability distribution. In this sense, the concept of population can be extended to continuous random variables with infinite populations.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)