Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Abstract polytope
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Incidence matrices== A polytope can also be represented by tabulating its [[incidence matrix|incidences]]. The following incidence matrix is that of a triangle: {|class=wikitable |- ! !ΓΈ||a||b||c||ab||bc||ca|||abc |- !ΓΈ |BGCOLOR="#ffe0e0"|1||1||1||1||1||1||1||1 |- !a |1||BGCOLOR="#e0ffe0"|1||BGCOLOR="#e0ffe0"|0||BGCOLOR="#e0ffe0"|0||1||0||1||1 |- !b |1||BGCOLOR="#e0ffe0"|0||BGCOLOR="#e0ffe0"|1||BGCOLOR="#e0ffe0"|0||1||1||0||1 |- !c |1||BGCOLOR="#e0ffe0"|0||BGCOLOR="#e0ffe0"|0||BGCOLOR="#e0ffe0"|1||0||1||1||1 |- !ab |1||1||1||0||BGCOLOR="#e0e0ff"|1||BGCOLOR="#e0e0ff"|0||BGCOLOR="#e0e0ff"|0||1 |- !bc |1||0||1||1||BGCOLOR="#e0e0ff"|0||BGCOLOR="#e0e0ff"|1||BGCOLOR="#e0e0ff"|0||1 |- !ca |1||1||0||1||BGCOLOR="#e0e0ff"|0||BGCOLOR="#e0e0ff"|0||BGCOLOR="#e0e0ff"|1||1 |- !abc |1||1||1||1||1||1||1||BGCOLOR="#ffe0ff"|1 |} The table shows a 1 wherever a face is a subface of another, ''or vice versa'' (so the table is [[symmetric matrix|symmetric]] about the diagonal)- so in fact, the table has ''redundant information''; it would suffice to show only a 1 when the row face β€ the column face. Since both the body and the empty set are incident with all other elements, the first row and column as well as the last row and column are trivial and can conveniently be omitted. === Square pyramid === [[File:Pyramid abstract polytope.svg|thumb|340px|A square pyramid and the associated abstract polytope.]] Further information is gained by counting each occurrence. This numerative usage enables a [[symmetry]] grouping, as in the [[Abstract polytope#The Hasse diagram|Hasse Diagram]] of the [[square pyramid]]: If vertices B, C, D, and E are considered symmetrically equivalent within the abstract polytope, then edges f, g, h, and j will be grouped together, and also edges k, l, m, and n, And finally also the triangles '''P''', '''Q''', '''R''', and '''S'''. Thus the corresponding incidence matrix of this abstract polytope may be shown as: {|class=wikitable |- ! ! A ||B,C,D,E||f,g,h,j||k,l,m,n||''P'',''Q'',''R'',''S''|| ''T'' |- !A |BGCOLOR="#ffe0e0"|1||BGCOLOR="#ffe0e0"|*||4||0||4||0 |- !B,C,D,E |BGCOLOR="#ffe0e0"|*||BGCOLOR="#ffe0e0"|4||1||2||2||1 |- !f,g,h,j |1||1||BGCOLOR="#e0ffe0"|4||BGCOLOR="#e0ffe0"|*||2||0 |- !k,l,m,n |0||2||BGCOLOR="#e0ffe0"|*||BGCOLOR="#e0ffe0"|4||1||1 |- !''P'',''Q'',''R'',''S'' |1||2||2||1||BGCOLOR="#e0e0ff"|4||BGCOLOR="#e0e0ff"|* |- !''T'' |0||4||0||4||BGCOLOR="#e0e0ff"|*||BGCOLOR="#e0e0ff"|1 |} In this accumulated incidence matrix representation the diagonal entries represent the total counts of either element type. Elements of different type of the same rank clearly are never incident so the value will always be 0; however, to help distinguish such relationships, an asterisk (*) is used instead of 0. The sub-diagonal entries of each row represent the incidence counts of the relevant sub-elements, while the super-diagonal entries represent the respective element counts of the vertex-, edge- or whatever -figure. Already this simple [[square pyramid]] shows that the symmetry-accumulated incidence matrices are no longer symmetrical. But there is still a simple entity-relation (beside the generalised Euler formulae for the diagonal, respectively the sub-diagonal entities of each row, respectively the super-diagonal elements of each row - those at least whenever no holes or stars etc. are considered), as for any such incidence matrix <math>I=(I_{ij})</math> holds: <math>I_{ii} \cdot I_{ij} = I_{ji} \cdot I_{jj} \ \ (i<j).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)