Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Biostatistics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bioinformatics advances in databases, data mining, and biological interpretation === The development of [[biological database]]s enables storage and management of biological data with the possibility of ensuring access for users around the world. They are useful for researchers depositing data, retrieve information and files (raw or processed) originated from other experiments or indexing scientific articles, as [[PubMed]]. Another possibility is search for the desired term (a gene, a protein, a disease, an organism, and so on) and check all results related to this search. There are databases dedicated to [[Single-nucleotide polymorphism|SNPs]] ([[dbSNP]]), the knowledge on genes characterization and their pathways ([[KEGG]]) and the description of gene function classifying it by cellular component, molecular function and biological process ([[Gene ontology|Gene Ontology]]).<ref name=":4">{{cite journal|doi=10.1002/jcp.21218|pmid=17654500|title=Bioinformatics|journal=Journal of Cellular Physiology|volume=213|issue=2|pages=365β9|year=2007|last1=Moore|first1=Jason H|s2cid=221831488|doi-access=free}}</ref> In addition to databases that contain specific molecular information, there are others that are ample in the sense that they store information about an organism or group of organisms. As an example of a database directed towards just one organism, but that contains much data about it, is the ''[[Arabidopsis thaliana]]'' genetic and molecular database β TAIR.<ref>{{cite web|url=https://www.arabidopsis.org/|title=TAIR - Home Page|website=www.arabidopsis.org}}</ref> Phytozome,<ref>{{cite web|url=https://phytozome.jgi.doe.gov/pz/portal.html|title=Phytozome|website=phytozome.jgi.doe.gov}}</ref> in turn, stores the assemblies and annotation files of dozen of plant genomes, also containing visualization and analysis tools. Moreover, there is an interconnection between some databases in the information exchange/sharing and a major initiative was the [[International Nucleotide Sequence Database Collaboration]] (INSDC)<ref>{{cite web|url=http://www.insdc.org/|title=International Nucleotide Sequence Database Collaboration - INSDC|website=www.insdc.org}}</ref> which relates data from DDBJ,<ref>{{cite web|url=https://www.ddbj.nig.ac.jp/index-e.html|title=Top|website=www.ddbj.nig.ac.jp|date=11 January 2024 }}</ref> EMBL-EBI,<ref>{{cite web|url=https://www.ebi.ac.uk/|title=The European Bioinformatics Institute < EMBL-EBI|website=www.ebi.ac.uk}}</ref> and NCBI.<ref>{{cite web|url=https://www.ncbi.nlm.nih.gov/|title=National Center for Biotechnology Information|publisher=U. S. National Library of Medicine β |website=www.ncbi.nlm.nih.gov}}</ref> Nowadays, increase in size and complexity of molecular datasets leads to use of powerful statistical methods provided by computer science algorithms which are developed by [[machine learning]] area. Therefore, data mining and machine learning allow detection of patterns in data with a complex structure, as biological ones, by using methods of [[Supervised learning|supervised]] and [[unsupervised learning]], regression, detection of [[Cluster analysis|clusters]] and [[Association rule learning|association rule mining]], among others.<ref name=":4"/> To indicate some of them, [[self-organizing map]]s and [[k-means clustering|''k''-means]] are examples of cluster algorithms; [[Artificial neural network|neural networks]] implementation and [[support vector machine]]s models are examples of common machine learning algorithms. Collaborative work among molecular biologists, bioinformaticians, statisticians and computer scientists is important to perform an experiment correctly, going from planning, passing through data generation and analysis, and ending with biological interpretation of the results.<ref name=":4"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)