Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bivariate and multivariate generating functions === The generating function in several variables can be generalized to arrays with multiple indices. These non-polynomial double sum examples are called '''multivariate generating functions''', or '''super generating functions'''. For two variables, these are often called '''bivariate generating functions'''. ==== Bivariate case ==== The ordinary generating function of a two-dimensional array {{math|''a''<sub>''m'',''n''</sub>}} (where {{mvar|n}} and {{mvar|m}} are natural numbers) is: <math display="block">G(a_{m,n};x,y)=\sum_{m,n=0}^\infty a_{m,n} x^m y^n.</math>For instance, since {{math|(1 + ''x'')<sup>''n''</sup>}} is the ordinary generating function for [[binomial coefficients]] for a fixed {{mvar|n}}, one may ask for a bivariate generating function that generates the binomial coefficients {{math|{{pars|s=150%|{{su|p=''n''|b=''k''|a=c}}}}}} for all {{mvar|k}} and {{mvar|n}}. To do this, consider {{math|(1 + ''x'')<sup>''n''</sup>}} itself as a sequence in {{mvar|n}}, and find the generating function in {{mvar|y}} that has these sequence values as coefficients. Since the generating function for {{math|''a''<sup>''n''</sup>}} is: <math display="block">\frac{1}{1-ay},</math>the generating function for the binomial coefficients is: <math display="block">\sum_{n,k} \binom{n}{k} x^k y^n = \frac{1}{1-(1+x)y}=\frac{1}{1-y-xy}.</math>Other examples of such include the following two-variable generating functions for the [[binomial coefficients]], the [[Stirling numbers]], and the [[Eulerian numbers]], where {{math|''ω''}} and {{math|''z''}} denote the two variables:<ref>See the usage of these terms in {{harvnb|Graham|Knuth|Patashnik|1994|loc=Β§7.4}} on special sequence generating functions.</ref> <math display="block">\begin{align} e^{z+wz} & = \sum_{m,n \geq 0} \binom{n}{m} w^m \frac{z^n}{n!} \\[4px] e^{w(e^z-1)} & = \sum_{m,n \geq 0} \begin{Bmatrix} n \\ m \end{Bmatrix} w^m \frac{z^n}{n!} \\[4px] \frac{1}{(1-z)^w} & = \sum_{m,n \geq 0} \begin{bmatrix} n \\ m \end{bmatrix} w^m \frac{z^n}{n!} \\[4px] \frac{1-w}{e^{(w-1)z}-w} & = \sum_{m,n \geq 0} \left\langle\begin{matrix} n \\ m \end{matrix} \right\rangle w^m \frac{z^n}{n!} \\[4px] \frac{e^w-e^z}{w e^z-z e^w} &= \sum_{m,n \geq 0} \left\langle\begin{matrix} m+n+1 \\ m \end{matrix} \right\rangle \frac{w^m z^n}{(m+n+1)!}. \end{align}</math> ==== Multivariate case ==== Multivariate generating functions arise in practice when calculating the number of [[contingency tables]] of non-negative integers with specified row and column totals. Suppose the table has {{mvar|r}} rows and {{mvar|c}} columns; the row sums are {{math|''t''<sub>1</sub>, ''t''<sub>2</sub> ... ''t<sub>r</sub>''}} and the column sums are {{math|''s''<sub>1</sub>, ''s''<sub>2</sub> ... ''s<sub>c</sub>''}}. Then, according to [[I. J. Good]],<ref name="Good 1986">{{cite journal |last=Good |first=I. J. |year=1986 |title=On applications of symmetric Dirichlet distributions and their mixtures to contingency tables |journal=[[Annals of Statistics]] |volume=4 |issue=6 |pages=1159β1189 |doi=10.1214/aos/1176343649 |doi-access=free}}</ref> the number of such tables is the coefficient of: <math display="block">x_1^{t_1}\cdots x_r^{t_r}y_1^{s_1}\cdots y_c^{s_c}</math>in:<math display="block">\prod_{i=1}^{r}\prod_{j=1}^c\frac{1}{1-x_iy_j}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)