Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neural network (machine learning)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Computational power=== The [[multilayer perceptron]] is a [[UTM theorem|universal function]] approximator, as proven by the [[universal approximation theorem]]. However, the proof is not constructive regarding the number of neurons required, the network topology, the weights and the learning parameters. A specific recurrent architecture with [[rational number|rational]]-valued weights (as opposed to full precision real number-valued weights) has the power of a [[universal Turing machine]],<ref>{{Cite journal | title = Turing computability with neural nets | url = http://www.math.rutgers.edu/~sontag/FTPDIR/aml-turing.pdf | year = 1991 | journal = Appl. Math. Lett. | pages = 77–80 | volume = 4 | issue = 6 | last1 = Siegelmann | first1 = H.T. | last2 = Sontag | first2 = E.D. | doi = 10.1016/0893-9659(91)90080-F | access-date = 10 January 2017 | archive-date = 19 May 2024 | archive-url = https://web.archive.org/web/20240519082138/http://www.math.rutgers.edu/~sontag/FTPDIR/aml-turing.pdf | url-status = live }}</ref> using a finite number of neurons and standard linear connections. Further, the use of [[Irrational number|irrational]] values for weights results in a machine with [[Hypercomputation|super-Turing]] power.<ref>{{cite news |title=Analog computer trumps Turing model |first=Sunny |last=Bains |date=3 November 1998 |work=EE Times |url=https://www.eetimes.com/analog-computer-trumps-turing-model/ |access-date=11 May 2023 |archive-date=11 May 2023 |archive-url=https://web.archive.org/web/20230511152308/https://www.eetimes.com/analog-computer-trumps-turing-model/ |url-status=live }}</ref><ref>{{cite journal |last1=Balcázar |first1=José |title=Computational Power of Neural Networks: A Kolmogorov Complexity Characterization |journal=IEEE Transactions on Information Theory|date=July 1997 |volume=43 |issue=4 |pages=1175–1183 |doi=10.1109/18.605580 |citeseerx=10.1.1.411.7782 }}</ref>{{Failed verification|date=May 2023}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)