Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The Kac–Bernstein theorem === The [[Kac–Bernstein theorem]] states that if <math display="inline">X</math> and {{tmath|Y}} are independent and <math display=inline>X + Y</math> and <math display=inline>X - Y</math> are also independent, then both ''X'' and ''Y'' must necessarily have normal distributions.<ref name="Lukacs">{{harvtxt |Lukacs |King |1954 }}</ref><ref>{{cite journal| last1=Quine| first1=M.P. |year=1993|title=On three characterisations of the normal distribution |url=http://www.math.uni.wroc.pl/~pms/publicationsArticle.php?nr=14.2&nrA=8&ppB=257&ppE=263 |journal=Probability and Mathematical Statistics|volume=14 |issue=2 |pages=257–263}}</ref> More generally, if <math display=inline>X_1, \ldots, X_n</math> are independent random variables, then two distinct linear combinations <math display=inline>\sum{a_kX_k}</math> and <math display=inline>\sum{b_kX_k}</math>will be independent if and only if all <math display=inline>X_k</math> are normal and <math display=inline>\sum{a_kb_k\sigma_k^2=0}</math>, where <math display=inline>\sigma_k^2</math> denotes the variance of <math display=inline>X_k</math>.<ref name="Lukacs" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)