Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stellar dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== A worked example for neutrinos in galaxies === For example, the phase space distribution function of non-relativistic neutrinos of mass m anywhere will not exceed the maximum value set by <math display="block"> f(\mathbf{x},\mathbf{v},t) = {dN \over dx^3 dv^3} \le {6 \over (2\pi \hbar/m)^3}, ~~~ </math> where the Fermi-Dirac statistics says there are at most 6 flavours of neutrinos within a volume <math> dx^3 </math> and a velocity volume <math display="block"> dv^3 = (dp/m)^3 = [(2\pi\hbar/dx)/m]^3,</math>. Let's approximate the distribution is at maximum, i.e., <math display="block"> f(x, y, z, V_x, V_y, V_z) = {6 \over (2\pi \hbar/m)^3} q^{\alpha \over 2}, ~~ 0 \le q(E)={\Phi_{\max}- E \over V_0^2/2} \le 1, </math> where <math> 0 \ge \Phi_{\max} \ge E= \Phi(x,y,z) + {V_x^2 + V_y^2 + V_z^2 \over 2} \ge \Phi_{\min} \equiv \Phi_{\max}- {V_0^2 \over 2} </math> such that <math> E_{\min}, E_{\max} </math>, respectively, is the potential energy of at the centre or the edge of the gravitational bound system. The corresponding neutrino mass density, assume spherical, would be <math display="block">\rho(r) = n(x,y,z) m = \int dV_x \int dV_y \int dV_z ~m~ f(x,y,z,V_x,V_y,V_z), </math> which reduces to <math display="block">\rho(r) = { C (\Phi_{\max}-\Phi(r))^{3+\alpha \over 2} \over (\Phi_{\max}-\Phi_{\min} )^{\alpha \over 2} }, ~~~ C={6 m \pi 2^{5/2} B\left(1+{\alpha \over 2}, {3 \over 2}\right) \over (2\pi \hbar/m)^3} </math> Take the simple case <math> \alpha \to 0 </math>, and estimate the density at the centre <math> r=0 </math> with an escape speed <math> V_0 </math>, we have <math display="block"> \rho(r) \le \rho(0) \rightarrow { m^4 V_0^3 \over \pi^2 \hbar^3} \approx m_\mathrm{eV}^4 V_{200}^3 \times \text{[Cosmic Critical Density]}.</math> Clearly eV-scale neutrinos with <math> m_{eV} \sim 0.1-1 </math> is too light to make up the 100β10000 over-density in galaxies with escape velocity <math> V_{200} \equiv V/(\mathrm{200km/s}) \sim 0.1-3.4 </math>, while neutrinos in clusters with <math> V \sim \mathrm{2000 km/s} </math> could make up <math> 100-1000 </math> times cosmic background density. By the way the freeze-out cosmic neutrinos in your room have a non-thermal random momentum <math display="inline"> \sim {(\mathrm{2.7 K}) k \over c} \sim (1~\mathrm{eV}/c^2) (\mathrm{70 km/s}) </math>, and do not follow a Maxwell distribution, and are not in thermal equilibrium with the air molecules because of the extremely low cross-section of neutrino-baryon interactions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)