Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dislocation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Forces on dislocations === Dislocation motion as a result of external stress on a crystal lattice can be described using virtual internal forces which act perpendicular to the dislocation line. The Peach-Koehler equation<ref>{{Cite journal|last1=Peach|first1=M.|last2=Koehler|first2=J. S.|date=1950-11-01|title=The Forces Exerted on Dislocations and the Stress Fields Produced by Them|journal=Physical Review|volume=80|issue=3|pages=436β439|doi=10.1103/PhysRev.80.436|bibcode=1950PhRv...80..436P}}</ref><ref>{{Cite book|last=Suzuki|first=Taira|title=Dislocation Dynamics and Plasticity|date=1991|publisher=Springer Berlin Heidelberg|others=Takeuchi, Shin., Yoshinaga, Hideo.|isbn=978-3-642-75774-7|location=Berlin, Heidelberg|pages=8|oclc=851741787}}</ref><ref>{{Cite book|last=Soboyejo|first=Winston O.|title=Mechanical properties of engineered materials|date=2003|publisher=Marcel Dekker|isbn=0-8247-8900-8|location=New York|chapter=6 Introduction to Dislocation Mechanics|oclc=50868191}}</ref> can be used to calculate the force per unit length on a dislocation as a function of the Burgers vector, <math>\mathbf{b}</math>, stress, <math>\sigma</math>, and the sense vector, <math>\mathbf{s}</math>. ::<math>\mathbf{f} = (\mathbf{b}\cdot \sigma)\times \mathbf{s}</math> The force per unit length of dislocation is a function of the general state of stress, <math>\mathbf{F}</math>, and the sense vector, <math>\mathbf{s}</math>. ::<math> \mathbf{f} = \mathbf{F} \times \mathbf{s} = \begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ F_x & F_y & F_z \\ s_x & s_y & s_z \end{vmatrix}</math> The components of the stress field can be obtained from the Burgers vector, normal stresses, <math>\sigma</math>, and shear stresses, <math>\tau</math>. ::<math>\begin{aligned} F_x &= b_x\sigma_{xx} + b_y\tau_{xy} + b_z\tau_{xz} \\ F_y &= b_x\tau_{yx} + b_y\sigma_{yy} + b_z\tau_{yz} \\ F_z &= b_x\tau_{zx} + b_y\tau_{zy} + b_z\sigma_{zz} \end{aligned}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)