Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Convolution of a test function with a distribution==== Convolution with <math>f \in \mathcal{D}(\R^n)</math> defines a linear map: <math display=block>\begin{alignat}{4} C_f : \,& \mathcal{D}(\R^n) && \to \,&& \mathcal{D}(\R^n) \\ & g && \mapsto\,&& f \ast g \\ \end{alignat}</math> which is [[continuous function|continuous]] with respect to the canonical [[LF space]] topology on <math>\mathcal{D}(\R^n).</math> Convolution of <math>f</math> with a distribution <math>T \in \mathcal{D}'(\R^n)</math> can be defined by taking the transpose of <math>C_f</math> relative to the duality pairing of <math>\mathcal{D}(\R^n)</math> with the space <math>\mathcal{D}'(\R^n)</math> of distributions.{{sfn|Trèves|2006|loc=Chapter 27}} If <math>f, g, \phi \in \mathcal{D}(\R^n),</math> then by [[Fubini's theorem]] <math display=block>\langle C_fg, \phi \rangle = \int_{\R^n}\phi(x)\int_{\R^n}f(x-y) g(y) \,dy \,dx = \left\langle g,C_{\tilde{f}}\phi \right\rangle.</math> Extending by continuity, the convolution of <math>f</math> with a distribution <math>T</math> is defined by <math display=block>\langle f \ast T, \phi \rangle = \left\langle T, \tilde{f} \ast \phi \right\rangle, \quad \text{ for all } \phi \in \mathcal{D}(\R^n).</math> An alternative way to define the convolution of a test function <math>f</math> and a distribution <math>T</math> is to use the translation operator <math>\tau_a.</math> The convolution of the compactly supported function <math>f</math> and the distribution <math>T</math> is then the function defined for each <math>x \in \R^n</math> by <math display=block>(f \ast T)(x) = \left\langle T, \tau_x \tilde{f} \right\rangle.</math> It can be shown that the convolution of a smooth, compactly supported function and a distribution is a smooth function. If the distribution <math>T</math> has compact support, and if <math>f</math> is a polynomial (resp. an exponential function, an analytic function, the restriction of an entire analytic function on <math>\Complex^n</math> to <math>\R^n,</math> the restriction of an entire function of exponential type in <math>\Complex^n</math> to <math>\R^n</math>), then the same is true of <math>T \ast f.</math>{{sfn|Trèves|2006|pp=284-297}} If the distribution <math>T</math> has compact support as well, then <math>f\ast T</math> is a compactly supported function, and the [[Titchmarsh convolution theorem]] {{harvtxt|Hörmander|1983|loc=Theorem 4.3.3}} implies that: <math display=block>\operatorname{ch}(\operatorname{supp}(f \ast T)) = \operatorname{ch}(\operatorname{supp}(f)) + \operatorname{ch} (\operatorname{supp}(T))</math> where <math>\operatorname{ch}</math> denotes the [[convex hull]] and <math>\operatorname{supp}</math> denotes the support.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)