Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logistic map
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Feigenbaum universality of 1-D maps=== Universality of one-dimensional maps with parabolic maxima and [[Feigenbaum constants]] <math>\delta=4.669201...</math>, <math>\alpha=2.502907...</math>.<ref>[http://chaosbook.org/extras/mjf/LA-6816-PR.pdf Feigenbaum, M. J. (1976) "Universality in complex discrete dynamics", Los Alamos Theoretical Division Annual Report 1975-1976]</ref><ref>{{cite journal|last=Feigenbaum|first=Mitchell|date=1978|title=Quantitative universality for a class of nonlinear transformations|journal=Journal of Statistical Physics|volume=19|issue=1|pages=25–52|bibcode=1978JSP....19...25F|citeseerx=10.1.1.418.9339|doi=10.1007/BF01020332|s2cid=124498882}}</ref> The gradual increase of <math>G</math> at interval <math>[0, \infty)</math> changes dynamics from regular to chaotic one <ref name="Okulov, A Yu 1984">{{cite journal|last1=Okulov|first1=A Yu|last2=Oraevskiĭ|first2=A N|year=1984|title=Regular and stochastic self-modulation in a ring laser with nonlinear element|journal=Soviet Journal of Quantum Electronics|volume=14|issue=2|pages=1235–1237|bibcode=1984QuEle..14.1235O|doi=10.1070/QE1984v014n09ABEH006171}}</ref> with qualitatively the same [[bifurcation diagram]] as those for logistic map.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)