Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logistic regression
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Iteratively reweighted least squares (IRLS) === Binary logistic regression (<math>y=0</math> or <math> y=1</math>) can, for example, be calculated using ''iteratively reweighted least squares'' (IRLS), which is equivalent to maximizing the [[log-likelihood]] of a [[Bernoulli distribution|Bernoulli distributed]] process using [[Newton's method]]. If the problem is written in vector matrix form, with parameters <math>\mathbf{w}^T=[\beta_0,\beta_1,\beta_2, \ldots]</math>, explanatory variables <math>\mathbf{x}(i)=[1, x_1(i), x_2(i), \ldots]^T</math> and expected value of the Bernoulli distribution <math>\mu(i)=\frac{1}{1+e^{-\mathbf{w}^T\mathbf{x}(i)}}</math>, the parameters <math>\mathbf{w}</math> can be found using the following iterative algorithm: :<math>\mathbf{w}_{k+1} = \left(\mathbf{X}^T\mathbf{S}_k\mathbf{X}\right)^{-1}\mathbf{X}^T \left(\mathbf{S}_k \mathbf{X} \mathbf{w}_k + \mathbf{y} - \mathbf{\boldsymbol\mu}_k\right) </math> where <math>\mathbf{S}=\operatorname{diag}(\mu(i)(1-\mu(i)))</math> is a diagonal weighting matrix, <math>\boldsymbol\mu=[\mu(1), \mu(2),\ldots]</math> the vector of expected values, :<math>\mathbf{X}=\begin{bmatrix} 1 & x_1(1) & x_2(1) & \ldots\\ 1 & x_1(2) & x_2(2) & \ldots\\ \vdots & \vdots & \vdots \end{bmatrix}</math> The regressor matrix and <math>\mathbf{y}(i)=[y(1),y(2),\ldots]^T</math> the vector of response variables. More details can be found in the literature.<ref>{{cite book|last1=Murphy|first1=Kevin P.|title=Machine Learning β A Probabilistic Perspective|publisher=The MIT Press|date=2012|page=245|isbn=978-0-262-01802-9}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)