Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neural network (machine learning)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Capacity=== A model's "capacity" property corresponds to its ability to model any given function. It is related to the amount of information that can be stored in the network and to the notion of complexity. Two notions of capacity are known by the community. The information capacity and the VC Dimension. The information capacity of a perceptron is intensively discussed in [[David J. C. MacKay|Sir David MacKay]]'s book<ref name="auto">{{cite book| last=MacKay| first=David J.C.| author-link=David J.C. MacKay| year=2003| publisher=[[Cambridge University Press]]| isbn=978-0-521-64298-9| title=Information Theory, Inference, and Learning Algorithms| url=http://www.inference.phy.cam.ac.uk/itprnn/book.pdf| access-date=11 June 2016| archive-date=19 October 2016| archive-url=https://web.archive.org/web/20161019163258/http://www.inference.phy.cam.ac.uk/itprnn/book.pdf| url-status=live}}</ref> which summarizes work by [[Thomas M. Cover|Thomas Cover]].<ref>{{cite journal|last=Cover|first=Thomas|author-link=Thomas M. Cover|year=1965|publisher=[[IEEE]]|url=http://www-isl.stanford.edu/people/cover/papers/paper2.pdf|title=Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition|journal=IEEE Transactions on Electronic Computers|issue=3|pages=326β334|volume=EC-14|doi=10.1109/PGEC.1965.264137|access-date=10 March 2020|archive-date=5 March 2016|archive-url=https://web.archive.org/web/20160305031348/http://www-isl.stanford.edu/people/cover/papers/paper2.pdf|url-status=live}}</ref> The capacity of a network of standard neurons (not convolutional) can be derived by four rules<ref>{{cite book| last=Gerald | first=Friedland| title=Proceedings of the 27th ACM International Conference on Multimedia| chapter=Reproducibility and Experimental Design for Machine Learning on Audio and Multimedia Data| author-link=Gerald Friedland|year=2019|publisher=[[Association for Computing Machinery|ACM]]| pages=2709β2710| doi=10.1145/3343031.3350545| isbn=978-1-4503-6889-6| s2cid=204837170}}</ref> that derive from understanding a neuron as an electrical element. The information capacity captures the functions modelable by the network given any data as input. The second notion, is the [[VC dimension]]. VC Dimension uses the principles of [[measure theory]] and finds the maximum capacity under the best possible circumstances. This is, given input data in a specific form. As noted in,<ref name="auto"/> the VC Dimension for arbitrary inputs is half the information capacity of a perceptron. The VC Dimension for arbitrary points is sometimes referred to as Memory Capacity.<ref>{{cite web| url=http://tfmeter.icsi.berkeley.edu/| title=Stop tinkering, start measuring! Predictable experimental design of Neural Network experiments| website=The Tensorflow Meter| access-date=10 March 2020| archive-date=18 April 2022| archive-url=https://web.archive.org/web/20220418025904/http://tfmeter.icsi.berkeley.edu/| url-status=dead}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)