Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polynomial interpolation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further reading== * {{cite book |first=Kendell A. |last=Atkinson |year=1988 |title=An Introduction to Numerical Analysis |url=https://archive.org/details/introductiontonu0000atki |url-access=registration |edition=2nd |chapter=Chapter 3. |publisher= John Wiley and Sons |isbn=0-471-50023-2 }} * {{cite journal |first=L. |last=Brutman |year=1997 |title=Lebesgue functions for polynomial interpolation — a survey |journal=Ann. Numer. Math. |volume=4 |pages=111–127 }} * {{cite book |first=M. J. D. |last=Powell |author-link=Michael J. D. Powell |year=1981 |title=Approximation Theory and Methods |chapter=Chapter 4 |publisher=Cambridge University Press |isbn=0-521-29514-9 }} * {{cite book |first=Michelle |last=Schatzman |author-link=Michelle Schatzman |year=2002 |title=Numerical Analysis: A Mathematical Introduction |chapter=Chapter 4 |publisher=Clarendon Press |location=Oxford |isbn=0-19-850279-6 }} * {{cite book |first1=Endre |last1=Süli |author-link=Endre Süli |first2=David |last2=Mayers |year=2003 |title=An Introduction to Numerical Analysis |chapter=Chapter 6 |publisher=Cambridge University Press |isbn=0-521-00794-1 }} * J. L. Walsh: ''Interpolation and Approximation by Rational Functions in the Complex Domain'', AMS (Colloquium Publications, Vol.20), ISBN 0-8218-1020-0 (1960). Chapter VII:'Interpolation by Polynomials'.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)