Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== {{Main|History of trigonometry}} While the early study of trigonometry can be traced to antiquity, the trigonometric functions as they are in use today were developed in the medieval period. The [[Chord (geometry)|chord]] function was defined by [[Hipparchus]] of [[İznik|Nicaea]] (180–125 BCE) and [[Ptolemy]] of [[Egypt (Roman province)|Roman Egypt]] (90–165 CE). The functions of sine and [[versine]] (1 – cosine) are closely related to the [[Jyā, koti-jyā and utkrama-jyā|''jyā'' and ''koti-jyā'']] functions used in [[Gupta period]] [[Indian astronomy]] (''[[Aryabhatiya]]'', ''[[Surya Siddhanta]]''), via translation from Sanskrit to Arabic and then from Arabic to Latin.<ref name="Boyer_1991"/> (See [[Aryabhata's sine table]].) All six trigonometric functions in current use were known in [[Islamic mathematics]] by the 9th century, as was the [[law of sines]], used in [[solving triangles]].<ref name="Gingerich_1986"/> [[Al-Khwārizmī]] (c. 780–850) produced tables of sines and cosines. Circa 860, [[Habash al-Hasib al-Marwazi]] defined the tangent and the cotangent, and produced their tables.<ref name="Sesiano">Jacques Sesiano, "Islamic mathematics", p. 157, in {{Cite book |title=Mathematics Across Cultures: The History of Non-western Mathematics |editor1-first=Helaine |editor1-last=Selin |editor1-link=Helaine Selin |editor2-first=Ubiratan |editor2-last=D'Ambrosio |editor2-link=Ubiratan D'Ambrosio |year=2000 |publisher=[[Springer Science+Business Media]] |isbn=978-1-4020-0260-1}}</ref><ref name="Britannica">{{cite web |title=trigonometry |date=17 November 2023 |url=http://www.britannica.com/EBchecked/topic/605281/trigonometry |publisher=Encyclopedia Britannica}}</ref> [[Muhammad ibn Jābir al-Harrānī al-Battānī]] (853–929) defined the reciprocal functions of secant and cosecant, and produced the first table of cosecants for each degree from 1° to 90°.<ref name="Britannica"/> The trigonometric functions were later studied by mathematicians including [[Omar Khayyám]], [[Bhāskara II]], [[Nasir al-Din al-Tusi]], [[Jamshīd al-Kāshī]] (14th century), [[Ulugh Beg]] (14th century), [[Regiomontanus]] (1464), [[Georg Joachim Rheticus|Rheticus]], and Rheticus' student [[Valentinus Otho]]. [[Madhava of Sangamagrama]] (c. 1400) made early strides in the [[mathematical analysis|analysis]] of trigonometric functions in terms of [[series (mathematics)|infinite series]].<ref name="mact-biog"/> (See [[Madhava series]] and [[Madhava's sine table]].) The tangent function was brought to Europe by [[Giovanni Bianchini]] in 1467 in trigonometry tables he created to support the calculation of stellar coordinates.<ref>{{cite journal | url=https://www.jstor.org/stable/45211959 | jstor=45211959 | title=The end of an error: Bianchini, Regiomontanus, and the tabulation of stellar coordinates | last1=Van Brummelen | first1=Glen | journal=Archive for History of Exact Sciences | year=2018 | volume=72 | issue=5 | pages=547–563 | doi=10.1007/s00407-018-0214-2 | s2cid=240294796 }}</ref> The terms ''tangent'' and ''secant'' were first introduced by the Danish mathematician [[Thomas Fincke]] in his book ''Geometria rotundi'' (1583).<ref name="Fincke"/> The 17th century French mathematician [[Albert Girard]] made the first published use of the abbreviations ''sin'', ''cos'', and ''tan'' in his book ''Trigonométrie''.<ref name=MacTutor>{{MacTutor|id=Girard_Albert}}</ref> In a paper published in 1682, [[Gottfried Leibniz]] proved that {{math|sin ''x''}} is not an [[algebraic function]] of {{mvar|x}}.<ref name="Bourbaki_1994"/> Though defined as ratios of sides of a [[right triangle]], and thus appearing to be [[rational function]]s, Leibnitz result established that they are actually [[transcendental function]]s of their argument. The task of assimilating circular functions into algebraic expressions was accomplished by Euler in his ''[[Introduction to the Analysis of the Infinite]]'' (1748). His method was to show that the sine and cosine functions are [[alternating series]] formed from the even and odd terms respectively of the [[exponential function|exponential series]]. He presented "[[Euler's formula]]", as well as near-modern abbreviations (''sin.'', ''cos.'', ''tang.'', ''cot.'', ''sec.'', and ''cosec.'').<ref name="Boyer_1991"/> A few functions were common historically, but are now seldom used, such as the [[chord (geometry)|chord]], [[versine]] (which appeared in the earliest tables<ref name="Boyer_1991"/>), [[haversine]], [[coversine]],<ref>{{harvtxt|Nielsen|1966|pp=xxiii–xxiv}}</ref> half-tangent (tangent of half an angle), and [[exsecant]]. [[List of trigonometric identities]] shows more relations between these functions. : <math>\begin{align} \operatorname{crd}\theta &= 2 \sin\tfrac12\theta, \\[5mu] \operatorname{vers}\theta&=1-\cos \theta = 2\sin^2\tfrac12\theta, \\[5mu] \operatorname{hav}\theta&=\tfrac{1}{2}\operatorname{vers}\theta = \sin^2\tfrac12\theta, \\[5mu] \operatorname{covers}\theta&=1-\sin\theta = \operatorname{vers}\bigl(\tfrac12\pi - \theta\bigr), \\[5mu] \operatorname{exsec}\theta &= \sec\theta - 1. \end{align}</math> {{anchor|Logarithmic sine|Logarithmic cosine|Logarithmic secant|Logarithmic cosecant|Logarithmic tangent|Logarithmic cotangent}}Historically, trigonometric functions were often combined with [[logarithm]]s in compound functions like the logarithmic sine, logarithmic cosine, logarithmic secant, logarithmic cosecant, logarithmic tangent and logarithmic cotangent.<ref name="Hammer_1897">{{cite book |title=Lehrbuch der ebenen und sphärischen Trigonometrie. Zum Gebrauch bei Selbstunterricht und in Schulen, besonders als Vorbereitung auf Geodäsie und sphärische Astronomie |language=de |trans-title= |editor-first=Ernst Hermann Heinrich |editor-last=von Hammer |editor-link=:de:Ernst von Hammer |location=Stuttgart, Germany |publisher=[[J. B. Metzlerscher Verlag]] |date=1897 |edition=2 |url=https://quod.lib.umich.edu/u/umhistmath/ABN6964.0001.001/?view=toc |access-date=2024-02-06}}</ref><ref name="Heß_1916">{{cite book |title=Trigonometrie für Maschinenbauer und Elektrotechniker - Ein Lehr- und Aufgabenbuch für den Unterricht und zum Selbststudium |language=de |trans-title= |author-first=Adolf |author-last=Heß |location=Winterthur, Switzerland |publisher=Springer |edition=6 |date=1926 |orig-date=1916 |doi=10.1007/978-3-662-36585-4 |isbn=978-3-662-35755-2}}</ref><ref name="Lötzbeyer_1950">{{cite book |title=Erläuterungen und Beispiele für den Gebrauch der vierstelligen Tafeln zum praktischen Rechnen |language=de |trans-title= |chapter=§ 14. Erläuterungen u. Beispiele zu T. 13: lg sin X; lg cos X und T. 14: lg tg x; lg ctg X |trans-chapter= |author-first=Philipp |author-last=Lötzbeyer |date=1950 |edition=1 |isbn=978-3-11114038-4 |id=Archive ID 541650 |publication-place=Berlin, Germany |publisher=[[Walter de Gruyter & Co.]] |doi=10.1515/9783111507545 |url=https://www.degruyter.com/document/doi/10.1515/9783111507545/html |chapter-url=https://www.degruyter.com/document/doi/10.1515/9783111507545-015/html |access-date=2024-02-06}}</ref><ref name="Roegel_2016">{{cite book |title=A reconstruction of Peters's table of 7-place logarithms (volume 2, 1940) |date=2016-08-30 |editor-first=Denis |editor-last=Roegel |id=hal-01357842 |url=https://inria.hal.science/hal-01357842/document |location=Vandoeuvre-lès-Nancy, France |publisher=[[Université de Lorraine]] |access-date=2024-02-06 |url-status=live |archive-url=https://web.archive.org/web/20240206211422/https://inria.hal.science/hal-01357842/document |archive-date=2024-02-06}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)