Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arithmetic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Sums of squares === For all <math>k \ge 4,\;\;\; r_k(n) > 0.</math> ([[Lagrange's four-square theorem]]). : <math> r_2(n) = 4\sum_{d\mid n}\left(\frac{-4}{d}\right), </math> <ref>Hardy & Wright, Thm. 278</ref> where the [[Kronecker symbol]] has the values : <math> \left(\frac{-4}{n}\right) = \begin{cases} +1&\text{if }n\equiv 1 \pmod 4 \\ -1&\text{if }n\equiv 3 \pmod 4\\ \;\;\;0&\text{if }n\text{ is even}.\\ \end{cases} </math> There is a formula for ''r''<sub>3</sub> in the section on [[#Class number related|class numbers]] below. <math display="block"> r_4(n) = 8 \sum_{\stackrel{d\mid n}{ 4\, \nmid \,d}}d = 8 (2+(-1)^n)\sum_{\stackrel{d\mid n}{ 2\, \nmid \,d}}d = \begin{cases} 8\sigma(n)&\text{if } n \text{ is odd }\\ 24\sigma\left(\frac{n}{2^\nu}\right)&\text{if } n \text{ is even } \end{cases}, </math> where {{math|1=''ν'' = ''ν''<sub>2</sub>(''n'')}}. <ref>Hardy & Wright, Thm. 386</ref><ref>Hardy, ''Ramanujan'', eqs 9.1.2, 9.1.3</ref><ref>Koblitz, Ex. III.5.2</ref> <math display="block">r_6(n) = 16 \sum_{d\mid n} \chi\left(\frac{n}{d}\right)d^2 - 4\sum_{d\mid n} \chi(d)d^2,</math> where <math> \chi(n) = \left(\frac{-4}{n}\right).</math><ref name="Hardy & Wright, § 20.13">Hardy & Wright, § 20.13</ref> Define the function {{math|1=''σ''<sub>''k''</sub><sup>*</sup>(''n'')}} as<ref>Hardy, ''Ramanujan'', § 9.7</ref> <math display="block">\sigma_k^*(n) = (-1)^{n}\sum_{d\mid n}(-1)^d d^k= \begin{cases} \sum_{d\mid n} d^k=\sigma_k(n)&\text{if } n \text{ is odd }\\ \sum_{\stackrel{d\mid n}{ 2\, \mid \,d}}d^k -\sum_{\stackrel{d\mid n}{ 2\, \nmid \,d}}d^k&\text{if } n \text{ is even}. \end{cases} </math> That is, if ''n'' is odd, {{math|1=''σ''<sub>''k''</sub><sup>*</sup>(''n'')}} is the sum of the ''k''th powers of the divisors of ''n'', that is, {{math|1=''σ''<sub>''k''</sub>(''n''),}} and if ''n'' is even it is the sum of the ''k''th powers of the even divisors of ''n'' minus the sum of the ''k''th powers of the odd divisors of ''n''. : <math>r_8(n) = 16\sigma_3^*(n).</math> <ref name="Hardy & Wright, § 20.13" /><ref>Hardy, ''Ramanujan'', § 9.13</ref> Adopt the convention that Ramanujan's {{math|1=''τ''(''x'') = 0}} if ''x'' is '''not an integer.''' : <math> r_{24}(n) = \frac{16}{691}\sigma_{11}^*(n) + \frac{128}{691}\left\{ (-1)^{n-1}259\tau(n)-512\tau\left(\frac{n}{2}\right)\right\} </math> <ref>Hardy, ''Ramanujan'', § 9.17</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)