Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev's inequality
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Integral Chebyshev inequality== There is a second (less well known) inequality also named after Chebyshev<ref name=Fink1984>{{cite book |last1=Fink |first1=A. M. |last2=Jodeit |first2=Max Jr. |title= Inequalities in Statistics and Probability|isbn=978-0-940600-04-1 |mr=789242 |editor1-first=Y. L. |editor1-last=Tong |editor2-last=Gupta |editor2-first=Shanti S. |year=1984 |volume=5 |series=Institute of Mathematical Statistics Lecture Notes - Monograph Series |pages=115–120 |doi=10.1214/lnms/1215465637 |chapter-url=http://projecteuclid.org/euclid.lnms/1215465617 |access-date=7 October 2012|chapter=On Chebyshev's other inequality }}</ref> If ''f'', ''g'' : [''a'', ''b''] → '''R''' are two [[monotonic]] [[function (mathematics)|function]]s of the same monotonicity, then : <math> \frac{ 1 }{ b - a } \int_a^b \! f(x) g(x) \,dx \ge \left[ \frac{ 1 }{ b - a } \int_a^b \! f(x) \,dx \right] \left[ \frac{ 1 }{ b - a } \int_a^b \! g(x) \,dx \right] .</math> If ''f'' and ''g'' are of opposite monotonicity, then the above inequality works in the reverse way. {{Math theorem|Let <math>f</math> and <math>g</math> be monotonic functions of the same monotonicity on <math>[a,b]</math>. Then for any <math>x, y \in [a,b]</math> we have <math display="block">(f(x)-f(y))(g(x)-g(y)) \geq 0.</math>|name=Lemma}} {{Math proof|Integrate this inequality with respect to <math>x</math> and <math>y</math> over <math>[a,b]</math>: <math display="block">\int_a^b \int_a^b (f(x)-f(y))(g(x)-g(y)) \,dx\,dy \geq 0.</math> Expanding the integrand gives: <math display="block">\int_a^b \int_a^b \left[f(x)g(x) - f(x)g(y) - f(y)g(x) + f(y)g(y)\right] \,dx\,dy \geq 0.</math> Separate the double integral into four parts: <math display="block">\int_a^b \int_a^b f(x)g(x) \,dx\,dy - \int_a^b \int_a^b f(x)g(y) \,dx\,dy - \int_a^b \int_a^b f(y)g(x) \,dx\,dy + \int_a^b \int_a^b f(y)g(y) \,dx\,dy \geq 0.</math> Since the integration variable in each inner integral is independent, we have: * <math>\int_a^b \int_a^b f(x)g(x) \,dx\,dy = (b-a) \int_a^b f(x)g(x) \,dx,</math> * <math>\int_a^b \int_a^b f(y)g(y) \,dx\,dy = (b-a) \int_a^b f(y)g(y) \,dy = (b-a) \int_a^b f(x)g(x) \,dx,</math> * <math>\int_a^b \int_a^b f(x)g(y) \,dx\,dy = \left(\int_a^b f(x) \,dx\right)\left(\int_a^b g(y) \,dy\right),</math> * <math>\int_a^b \int_a^b f(y)g(x) \,dx\,dy = \left(\int_a^b f(y) \,dy\right)\left(\int_a^b g(x) \,dx\right) = \left(\int_a^b f(x) \,dx\right)\left(\int_a^b g(x) \,dx\right).</math> Let <math display="block">I = \int_a^b f(x)g(x) \,dx, \quad F = \int_a^b f(x) \,dx, \quad G = \int_a^b g(x) \,dx.</math> Substitute these into the inequality: <math display="block">(b-a)I - FG - FG + (b-a)I \geq 0.</math> Simplify: <math display="block">2(b-a)I - 2FG \geq 0.</math> Dividing by <math>2(b-a)</math> (noting that <math>b-a>0</math>): <math display="block">I \geq \frac{FG}{(b-a)}.</math> Divide both sides by <math>b-a</math> to obtain: <math display="block">\frac{1}{b-a} \int_a^b f(x)g(x) \,dx \geq \left(\frac{1}{b-a}\int_a^b f(x) \,dx\right) \left(\frac{1}{b-a}\int_a^b g(x) \,dx\right).</math> This completes the proof.}} This inequality is related to [[Jensen's inequality]],<ref name=Niculescu2001>{{cite journal |last=Niculescu |first=Constantin P. |title=An extension of Chebyshev's inequality and its connection with Jensen's inequality |journal=Journal of Inequalities and Applications |year=2001 |volume=6 |issue=4 |pages=451–462 |doi=10.1155/S1025583401000273 |url=http://emis.matem.unam.mx/journals/HOA/JIA/Volume6_4/462.html |access-date=6 October 2012 |issn=1025-5834|citeseerx=10.1.1.612.7056 |doi-access=free }}</ref> [[Kantorovich's inequality]],<ref name=Niculescu2001a>{{cite journal |last1=Niculescu |first1=Constantin P. |last2=Pečarić |first2=Josip |author-link2=Josip Pečarić |title=The Equivalence of Chebyshev's Inequality to the Hermite–Hadamard Inequality |journal=Mathematical Reports |year=2010 |volume=12 |issue=62 |pages=145–156 |url=http://www.csm.ro/reviste/Mathematical_Reports/Pdfs/2010/2/Niculescu.pdf |access-date=6 October 2012 |issn=1582-3067}}</ref> the [[Hermite–Hadamard inequality]]<ref name="Niculescu2001a"/> and [[Walter's conjecture]].<ref name=Malamud2001>{{cite journal |last=Malamud |first=S. M. |title=Some complements to the Jensen and Chebyshev inequalities and a problem of W. Walter |journal=Proceedings of the American Mathematical Society |date=15 February 2001 |volume=129 |issue=9 |pages=2671–2678 |doi=10.1090/S0002-9939-01-05849-X |mr=1838791 |url=https://www.ams.org/journals/proc/2001-129-09/S0002-9939-01-05849-X/ |access-date=7 October 2012 |issn=0002-9939|doi-access=free }}</ref> ===Other inequalities=== There are also a number of other inequalities associated with Chebyshev: *[[Chebyshev's sum inequality]] *[[Chebyshev–Markov–Stieltjes inequalities]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)