Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Convolution of a smooth function with a distribution==== Let <math>f \in C^\infty(\R^n)</math> and <math>T \in \mathcal{D}'(\R^n)</math> and assume that at least one of <math>f</math> and <math>T</math> has compact support. The '''{{em|convolution}}''' of <math>f</math> and <math>T,</math> denoted by <math>f \ast T</math> or by <math>T \ast f,</math> is the smooth function:{{sfn|Trèves|2006|pp=284-297}} <math display=block>\begin{alignat}{4} f \ast T : \,& \R^n && \to \,&& \Complex \\ & x && \mapsto\,&& \left\langle T, \tau_x \tilde{f} \right\rangle \\ \end{alignat}</math> satisfying for all <math>p \in \N^n</math>: <math display=block>\begin{align} &\operatorname{supp}(f \ast T) \subseteq \operatorname{supp}(f)+ \operatorname{supp}(T) \\[6pt] &\text{ for all } p \in \N^n: \quad \begin{cases}\partial^p \left\langle T, \tau_x \tilde{f} \right\rangle = \left\langle T, \partial^p \tau_x \tilde{f} \right\rangle \\ \partial^p (T \ast f) = (\partial^p T) \ast f = T \ast (\partial^p f). \end{cases} \end{align}</math> Let <math>M</math> be the map <math>f \mapsto T \ast f</math>. If <math>T</math> is a distribution, then <math>M</math> is continuous as a map <math>\mathcal{D}(\R^n) \to C^\infty(\R^n)</math>. If <math>T</math> also has compact support, then <math>M</math> is also continuous as the map <math>C^\infty(\R^n) \to C^\infty(\R^n)</math> and continuous as the map <math>\mathcal{D}(\R^n) \to \mathcal{D}(\R^n).</math>{{sfn|Trèves|2006|pp=284-297}} If <math>L : \mathcal{D}(\R^n) \to C^\infty(\R^n)</math> is a continuous linear map such that <math>L \partial^\alpha \phi = \partial^\alpha L \phi</math> for all <math>\alpha</math> and all <math>\phi \in \mathcal{D}(\R^n)</math> then there exists a distribution <math>T \in \mathcal{D}'(\R^n)</math> such that <math>L \phi = T \circ \phi</math> for all <math>\phi \in \mathcal{D}(\R^n).</math>{{sfn|Rudin|1991|pp=149-181}} '''Example.'''{{sfn|Rudin|1991|pp=149-181}} Let <math>H</math> be the [[Heaviside step function|Heaviside function]] on <math>\R.</math> For any <math>\phi \in \mathcal{D}(\R),</math> <math display=block>(H \ast \phi)(x) = \int_{-\infty}^x \phi(t) \, dt.</math> Let <math>\delta</math> be the Dirac measure at 0 and let <math>\delta'</math> be its derivative as a distribution. Then <math>\delta' \ast H = \delta</math> and <math>1 \ast \delta' = 0.</math> Importantly, the associative law fails to hold: <math display=block>1 = 1 \ast \delta = 1 \ast (\delta' \ast H ) \neq (1 \ast \delta') \ast H = 0 \ast H = 0.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)