Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ellipse
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Inscribed angles and three-point form == === Circles === [[File:Inscribe-a-c.svg|thumb|Circle: inscribed angle theorem]] A circle with equation <math>\left(x - x_\circ\right)^2 + \left(y - y_\circ\right)^2 = r^2</math> is uniquely determined by three points <math>\left(x_1, y_1\right),\; \left(x_2,\,y_2\right),\; \left(x_3,\, y_3\right)</math> not on a line. A simple way to determine the parameters <math>x_\circ,y_\circ,r</math> uses the ''[[inscribed angle theorem]]'' for circles: : For four points <math>P_i = \left(x_i,\, y_i\right),\ i = 1,\, 2,\, 3,\, 4,\,</math> (see diagram) the following statement is true: : The four points are on a circle if and only if the angles at <math>P_3</math> and <math>P_4</math> are equal. Usually one measures inscribed angles by a degree or radian ''θ'', but here the following measurement is more convenient: : In order to measure the angle between two lines with equations <math>y = m_1x + d_1,\ y = m_2x + d_2,\ m_1 \ne m_2,</math> one uses the quotient: <math display="block">\frac{1 + m_1 m_2}{m_2 - m_1} = \cot\theta\ .</math> ====Inscribed angle theorem for circles==== For four points <math>P_i = \left(x_i,\, y_i\right),\ i = 1,\, 2,\, 3,\, 4,\,</math> no three of them on a line, we have the following (see diagram): : The four points are on a circle, if and only if the angles at <math>P_3</math> and <math>P_4</math> are equal. In terms of the angle measurement above, this means: <math display="block"> \frac{(x_4 - x_1)(x_4 - x_2) + (y_4 - y_1)(y_4 - y_2)} {(y_4 - y_1)(x_4 - x_2) - (y_4 - y_2)(x_4 - x_1)} = \frac{(x_3 - x_1)(x_3 - x_2) + (y_3 - y_1)(y_3 - y_2)} {(y_3 - y_1)(x_3 - x_2) - (y_3 - y_2)(x_3 - x_1)}. </math> At first the measure is available only for chords not parallel to the y-axis, but the final formula works for any chord. ====Three-point form of circle equation==== : As a consequence, one obtains an equation for the circle determined by three non-collinear points <math>P_i = \left(x_i,\, y_i\right)</math>: <math display="block"> \frac{({\color{red}x} - x_1)({\color{red}x} - x_2) + ({\color{red}y} - y_1)({\color{red}y} - y_2)} {({\color{red}y} - y_1)({\color{red}x} - x_2) - ({\color{red}y} - y_2)({\color{red}x} - x_1)} = \frac{(x_3 - x_1)(x_3 - x_2) + (y_3 - y_1)(y_3 - y_2)} {(y_3 - y_1)(x_3 - x_2) - (y_3 - y_2)(x_3 - x_1)}. </math> For example, for <math>P_1 = (2,\, 0),\; P_2 = (0,\, 1),\; P_3 = (0,\,0)</math> the three-point equation is: : <math>\frac{(x - 2)x + y(y - 1)}{yx - (y - 1)(x - 2)} = 0</math>, which can be rearranged to <math>(x - 1)^2 + \left(y - \tfrac{1}{2}\right)^2 = \tfrac{5}{4}\ .</math> Using vectors, [[dot product]]s and [[determinant]]s this formula can be arranged more clearly, letting <math>\vec x = (x,\, y)</math>: <math display="block"> \frac{\left({\color{red}\vec x} - \vec x_1\right) \cdot \left({\color{red}\vec x} - \vec x_2\right)} {\det\left({\color{red}\vec x} - \vec x_1,{\color{red}\vec x} - \vec x_2\right)} = \frac{\left(\vec x_3 - \vec x_1\right) \cdot \left(\vec x_3 - \vec x_2\right)} {\det\left(\vec x_3 - \vec x_1, \vec x_3 - \vec x_2\right)}. </math> The center of the circle <math>\left(x_\circ,\, y_\circ\right)</math> satisfies: <math display="block">\begin{bmatrix} 1 & \dfrac{y_1 - y_2}{x_1 - x_2} \\[2ex] \dfrac{x_1 - x_3}{y_1 - y_3} & 1 \end{bmatrix} \begin{bmatrix} x_\circ \\[1ex] y_\circ \end{bmatrix} = \begin{bmatrix} \dfrac{x_1^2 - x_2^2 + y_1^2 - y_2^2}{2(x_1 - x_2)} \\[2ex] \dfrac{y_1^2 - y_3^2 + x_1^2 - x_3^2}{2(y_1 - y_3)} \end{bmatrix}. </math> The radius is the distance between any of the three points and the center. <math display="block"> r = \sqrt{\left(x_1 - x_\circ\right)^2 + \left(y_1 - y_\circ\right)^2} = \sqrt{\left(x_2 - x_\circ\right)^2 + \left(y_2 - y_\circ\right)^2} = \sqrt{\left(x_3 - x_\circ\right)^2 + \left(y_3 - y_\circ\right)^2}. </math> === Ellipses === This section considers the family of ellipses defined by equations <math>\tfrac{\left(x - x_\circ\right)^2}{a^2} + \tfrac{\left(y - y_\circ\right)^2}{b^2} = 1</math> with a ''fixed'' eccentricity <math>e</math>. It is convenient to use the parameter: <math display="block">{\color{blue}q} = \frac{a^2}{b^2} = \frac{1}{1 - e^2},</math> and to write the ellipse equation as: <math display="block">\left(x - x_\circ\right)^2 + {\color{blue}q}\, \left(y - y_\circ\right)^2 = a^2,</math> where ''q'' is fixed and <math>x_\circ,\, y_\circ,\, a</math> vary over the real numbers. (Such ellipses have their axes parallel to the coordinate axes: if <math>q < 1</math>, the major axis is parallel to the ''x''-axis; if <math>q > 1</math>, it is parallel to the ''y''-axis.) [[File:Inscribe-a-e.svg|thumb|Inscribed angle theorem for an ellipse]] Like a circle, such an ellipse is determined by three points not on a line. For this family of ellipses, one introduces the following [[q-analog]] angle measure, which is ''not'' a function of the usual angle measure ''θ'':<ref>[http://www.mathematik.tu-darmstadt.de/~ehartmann/circlegeom.pdf E. Hartmann: Lecture Note '<nowiki/>'''Planar Circle Geometries'''', an Introduction to Möbius-, Laguerre- and Minkowski Planes, p. 55]</ref><ref>W. Benz, ''Vorlesungen über Geomerie der Algebren'', [[Springer Science+Business Media|Springer]] (1973)</ref> : In order to measure an angle between two lines with equations <math>y = m_1x + d_1,\ y = m_2x + d_2,\ m_1 \ne m_2</math> one uses the quotient: <math display="block">\frac{1 + {\color{blue}q}\; m_1 m_2}{m_2 - m_1}\ .</math> ====Inscribed angle theorem for ellipses==== : Given four points <math>P_i = \left(x_i,\, y_i\right),\ i = 1,\, 2,\, 3,\, 4</math>, no three of them on a line (see diagram). : The four points are on an ellipse with equation <math>(x - x_\circ)^2 + {\color{blue}q}\, (y - y_\circ)^2 = a^2</math> if and only if the angles at <math>P_3</math> and <math>P_4</math> are equal in the sense of the measurement above—that is, if <math display="block"> \frac{(x_4 - x_1)(x_4 - x_2) + {\color{blue}q}\;(y_4 - y_1)(y_4 - y_2)} {(y_4 - y_1)(x_4 - x_2) - (y_4 - y_2)(x_4 - x_1)} = \frac{(x_3 - x_1)(x_3 - x_2) + {\color{blue}q}\;(y_3 - y_1)(y_3 - y_2)} {(y_3 - y_1)(x_3 - x_2) - (y_3 - y_2)(x_3 - x_1)}\ . </math> At first the measure is available only for chords which are not parallel to the y-axis. But the final formula works for any chord. The proof follows from a straightforward calculation. For the direction of proof given that the points are on an ellipse, one can assume that the center of the ellipse is the origin. ====Three-point form of ellipse equation==== : A consequence, one obtains an equation for the ellipse determined by three non-collinear points <math>P_i = \left(x_i,\, y_i\right)</math>: <math display="block"> \frac{({\color{red}x} - x_1)({\color{red}x} - x_2) + {\color{blue}q}\;({\color{red}y} - y_1)({\color{red}y} - y_2)} {({\color{red}y} - y_1)({\color{red}x} - x_2) - ({\color{red}y} - y_2)({\color{red}x} - x_1)} = \frac{(x_3 - x_1)(x_3 - x_2) + {\color{blue}q}\;(y_3 - y_1)(y_3 - y_2)} {(y_3 - y_1)(x_3 - x_2) - (y_3 - y_2)(x_3 - x_1)}\ . </math> For example, for <math>P_1 = (2,\, 0),\; P_2 = (0,\,1),\; P_3 = (0,\, 0)</math> and <math>q = 4</math> one obtains the three-point form : <math>\frac{(x - 2)x + 4y(y - 1)}{yx - (y - 1)(x - 2)} = 0</math> and after conversion <math>\frac{(x - 1)^2}{2} + \frac{\left(y - \frac{1}{2}\right)^2}{\frac{1}{2}} = 1.</math> Analogously to the circle case, the equation can be written more clearly using vectors: <math display="block"> \frac{\left({\color{red}\vec x} - \vec x_1\right)*\left({\color{red}\vec x} - \vec x_2\right)} {\det\left({\color{red}\vec x} - \vec x_1,{\color{red}\vec x} - \vec x_2\right)} = \frac{\left(\vec x_3 - \vec x_1\right)*\left(\vec x_3 - \vec x_2\right)} {\det\left(\vec x_3 - \vec x_1, \vec x_3 - \vec x_2\right)}, </math> where <math>*</math> is the modified [[dot product]] <math>\vec u*\vec v = u_x v_x + {\color{blue}q}\,u_y v_y.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)