Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponentiation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Computation==== The ''canonical form'' <math>x+iy</math> of <math>z^w</math> can be computed from the canonical form of {{mvar|z}} and {{mvar|w}}. Although this can be described by a single formula, it is clearer to split the computation in several steps. * ''[[Polar form]] of {{mvar|z}}''. If <math>z=a+ib</math> is the canonical form of {{mvar|z}} ({{mvar|a}} and {{mvar|b}} being real), then its polar form is <math display=block>z=\rho e^{i\theta}= \rho (\cos\theta + i \sin\theta),</math> with <math display=inline>\rho=\sqrt{a^2+b^2}</math> and <math>\theta=\operatorname{atan2}(b,a)</math>, where {{tmath|\operatorname{atan2} }} is the [[atan2|two-argument arctangent]] function. * ''[[complex logarithm|Logarithm]] of {{mvar|z}}''. The [[principal value]] of this logarithm is <math>\log z=\ln \rho+i\theta,</math> where <math>\ln</math> denotes the [[natural logarithm]]. The other values of the logarithm are obtained by adding <math>2ik\pi</math> for any integer {{mvar|k}}. * ''Canonical form of <math>w\log z.</math>'' If <math>w=c+di</math> with {{mvar|c}} and {{mvar|d}} real, the values of <math>w\log z</math> are <math display=block>w\log z = (c\ln \rho - d\theta-2dk\pi) +i (d\ln \rho + c\theta+2ck\pi),</math> the principal value corresponding to <math>k=0.</math> * ''Final result''. Using the identities <math>e^{x+y}=e^xe^y</math> and <math>e^{y\ln x} = x^y,</math> one gets <math DISPLAY=block>z^w=\rho^c e^{-d(\theta+2k\pi)} \left(\cos (d\ln \rho + c\theta+2ck\pi) +i\sin(d\ln \rho + c\theta+2ck\pi)\right),</math> with <math>k=0</math> for the principal value. =====Examples===== * <math>i^i</math> <br>The polar form of {{mvar|i}} is <math>i=e^{i\pi/2},</math> and the values of <math>\log i</math> are thus <math DISPLAY=block>\log i=i\left(\frac \pi 2 +2k\pi\right).</math> It follows that <math DISPLAY=block>i^i=e^{i\log i}=e^{-\frac \pi 2} e^{-2k\pi}.</math>So, all values of <math>i^i</math> are real, the principal one being <math DISPLAY=block> e^{-\frac \pi 2} \approx 0.2079.</math> * <math>(-2)^{3+4i}</math><br>Similarly, the polar form of {{math|β2}} is <math>-2 = 2e^{i \pi}.</math> So, the above described method gives the values <math DISPLAY=block>\begin{align} (-2)^{3 + 4i} &= 2^3 e^{-4(\pi+2k\pi)} (\cos(4\ln 2 + 3(\pi +2k\pi)) +i\sin(4\ln 2 + 3(\pi+2k\pi)))\\ &=-2^3 e^{-4(\pi+2k\pi)}(\cos(4\ln 2) +i\sin(4\ln 2)). \end{align}</math>In this case, all the values have the same argument <math>4\ln 2,</math> and different absolute values. In both examples, all values of <math>z^w</math> have the same argument. More generally, this is true if and only if the [[real part]] of {{mvar|w}} is an integer.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)