Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermite polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Completeness relation === The [[Christoffel–Darboux formula]] for Hermite polynomials reads <math display="block">\sum_{k=0}^n \frac{H_k(x) H_k(y)}{k!2^k} = \frac{1}{n!2^{n+1}}\,\frac{H_n(y) H_{n+1}(x) - H_n(x) H_{n+1}(y)}{x - y}.</math> Moreover, the following [[Borel functional calculus#Resolution of the identity|completeness identity]] for the above Hermite functions holds in the sense of [[distribution (mathematics)|distributions]]: <math display="block">\sum_{n=0}^\infty \psi_n(x) \psi_n(y) = \delta(x - y),</math> where {{mvar|δ}} is the [[Dirac delta function]], {{math|''ψ''<sub>''n''</sub>}} the Hermite functions, and {{math|''δ''(''x'' − ''y'')}} represents the [[Lebesgue measure]] on the line {{math|1=''y'' = ''x''}} in {{math|'''R'''<sup>2</sup>}}, normalized so that its projection on the horizontal axis is the usual Lebesgue measure. This distributional identity follows {{harvtxt|Wiener|1958}} by taking {{math|''u'' → 1}} in [[Mehler's formula]], valid when {{math|−1 < ''u'' < 1}}: <math display="block">E(x, y; u) := \sum_{n=0}^\infty u^n \, \psi_n (x) \, \psi_n (y) = \frac{1}{\sqrt{\pi (1 - u^2)}} \, \exp\left(-\frac{1 - u}{1 + u} \, \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \, \frac{(x - y)^2}{4}\right),</math> which is often stated equivalently as a separable kernel,<ref>{{Citation | last1=Mehler | first1=F. G. | title=Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002152975 | language=de |trans-title=On the development of a function of arbitrarily many variables according to higher-order Laplace functions |id={{ERAM|066.1720cj}} | year=1866 | journal=Journal für die Reine und Angewandte Mathematik | issn=0075-4102 | issue=66 | pages=161–176}}. See p. 174, eq. (18) and p. 173, eq. (13).</ref><ref>{{harvnb|Erdélyi|Magnus|Oberhettinger|Tricomi|1955|page=194}}, 10.13 (22).</ref> <math display="block">\sum_{n=0}^\infty \frac{H_n(x) H_n(y)}{n!} \left(\frac u 2\right)^n = \frac{1}{\sqrt{1 - u^2}} e^{\frac{2u}{1 + u}xy - \frac{u^2}{1 - u^2}(x - y)^2}.</math> The function {{math|(''x'', ''y'') → ''E''(''x'', ''y''; ''u'')}} is the bivariate Gaussian probability density on {{math|'''R'''<sup>2</sup>}}, which is, when {{mvar|u}} is close to 1, very concentrated around the line {{math|1=''y'' = ''x''}}, and very spread out on that line. It follows that <math display="block">\sum_{n=0}^\infty u^n \langle f, \psi_n \rangle \langle \psi_n, g \rangle = \iint E(x, y; u) f(x) \overline{g(y)} \,dx \,dy \to \int f(x) \overline{g(x)} \,dx = \langle f, g \rangle</math> when {{math|''f''}} and {{math|''g''}} are continuous and compactly supported. This yields that {{mvar|f}} can be expressed in Hermite functions as the sum of a series of vectors in {{math|''L''<sup>2</sup>('''R''')}}, namely, <math display="block">f = \sum_{n=0}^\infty \langle f, \psi_n \rangle \psi_n.</math> In order to prove the above equality for {{math|''E''(''x'',''y'';''u'')}}, the [[Fourier transform]] of [[Gaussian function]]s is used repeatedly: <math display="block">\rho \sqrt{\pi} e^{-\frac{\rho^2 x^2}{4}} = \int e^{isx - \frac{s^2}{\rho^2}} \,ds \quad \text{for }\rho > 0.</math> The Hermite polynomial is then represented as <math display="block"> H_n(x) = (-1)^n e^{x^2} \frac {d^n}{dx^n} \left( \frac {1}{2\sqrt{\pi}} \int e^{isx - \frac{s^2}{4}} \,ds \right) = (-1)^n e^{x^2}\frac{1}{2\sqrt{\pi}} \int (is)^n e^{isx - \frac{s^2}{4}} \,ds.</math> With this representation for {{math|''H<sub>n</sub>''(''x'')}} and {{math|''H<sub>n</sub>''(''y'')}}, it is evident that <math display="block">\begin{align} E(x, y; u) &= \sum_{n=0}^\infty \frac{u^n}{2^n n! \sqrt{\pi}} \, H_n(x) H_n(y) e^{-\frac{x^2+y^2}{2}} \\ &= \frac{e^{\frac{x^2+y^2}{2}}}{4\pi\sqrt{\pi}}\iint\left( \sum_{n=0}^\infty \frac{1}{2^n n!} (-ust)^n \right ) e^{isx+ity - \frac{s^2}{4} - \frac{t^2}{4}}\, ds\,dt \\ & =\frac{e^{\frac{x^2+y^2}{2}}}{4\pi\sqrt{\pi}}\iint e^{-\frac{ust}{2}} \, e^{isx+ity - \frac{s^2}{4} - \frac{t^2}{4}}\, ds\,dt, \end{align}</math> and this yields the desired resolution of the identity result, using again the Fourier transform of Gaussian kernels under the substitution <math display="block">s = \frac{\sigma + \tau}{\sqrt 2}, \quad t = \frac{\sigma - \tau}{\sqrt 2}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)