Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neural network (machine learning)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Convergence=== Models may not consistently converge on a single solution, firstly because local minima may exist, depending on the cost function and the model. Secondly, the optimization method used might not guarantee to converge when it begins far from any local minimum. Thirdly, for sufficiently large data or parameters, some methods become impractical. Another issue worthy to mention is that training may cross some [[saddle point]] which may lead the convergence to the wrong direction. The convergence behavior of certain types of ANN architectures are more understood than others. When the width of network approaches to infinity, the ANN is well described by its first order [[Taylor expansion]] throughout training, and so inherits the convergence behavior of [[Linear model|affine models]].<ref>{{Cite journal|last1=Lee|first1=Jaehoon|last2=Xiao|first2=Lechao|last3=Schoenholz|first3=Samuel S.|last4=Bahri |first4=Yasaman|last5=Novak |first5=Roman|last6=Sohl-Dickstein|first6=Jascha|last7=Pennington |first7=Jeffrey|title=Wide neural networks of any depth evolve as linear models under gradient descent |journal=Journal of Statistical Mechanics: Theory and Experiment|year=2020|volume=2020|issue=12|page=124002 |doi=10.1088/1742-5468/abc62b|arxiv=1902.06720|bibcode=2020JSMTE2020l4002L|s2cid=62841516}}</ref><ref>{{cite conference |conference=32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canada |author1=Arthur Jacot |author2=Franck Gabriel |author3=Clement Hongler |date=2018 |url=https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf |title=Neural Tangent Kernel: Convergence and Generalization in Neural Networks |access-date=4 June 2022 |archive-date=22 June 2022 |archive-url=https://web.archive.org/web/20220622033100/https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf |url-status=live }}</ref> Another example is when parameters are small, it is observed that ANNs often fit target functions from low to high frequencies. This behavior is referred to as the spectral bias, or frequency principle, of neural networks.<ref>{{cite book |vauthors=Xu ZJ, Zhang Y, Xiao Y |title=Neural Information Processing |date=2019 |veditors=Gedeon T, Wong K, Lee M |series=Lecture Notes in Computer Science |volume=11953 |publisher=Springer, Cham |doi=10.1007/978-3-030-36708-4_22 |chapter=Training Behavior of Deep Neural Network in Frequency Domain |pages=264β274 |arxiv=1807.01251 |isbn=978-3-030-36707-7 |s2cid=49562099 }}</ref><ref>{{cite journal |author1=Nasim Rahaman |author2=Aristide Baratin |author3=Devansh Arpit |author4=Felix Draxler |author5=Min Lin |author6=Fred Hamprecht |author7=Yoshua Bengio |author8=Aaron Courville |journal=Proceedings of the 36th International Conference on Machine Learning |volume=97 |pages=5301β5310 |date=2019 |title=On the Spectral Bias of Neural Networks |arxiv=1806.08734 |url=http://proceedings.mlr.press/v97/rahaman19a/rahaman19a.pdf |access-date=4 June 2022 |archive-date=22 October 2022 |archive-url=https://web.archive.org/web/20221022155951/http://proceedings.mlr.press/v97/rahaman19a/rahaman19a.pdf |url-status=live }}</ref><ref>{{cite journal |arxiv=1901.06523 |author1=Zhi-Qin John Xu |author2=Yaoyu Zhang |author3=Tao Luo |author4=Yanyang Xiao |author5=Zheng Ma |title=Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks|journal=Communications in Computational Physics |year=2020 |volume=28 |issue=5 |pages=1746β1767 |doi=10.4208/cicp.OA-2020-0085 |bibcode=2020CCoPh..28.1746X |s2cid=58981616 }}</ref><ref>{{cite arXiv |eprint=1906.09235 |author1=Tao Luo |author2=Zheng Ma |author3=Zhi-Qin John Xu |author4=Yaoyu Zhang |date=2019 |title=Theory of the Frequency Principle for General Deep Neural Networks|class=cs.LG }}</ref> This phenomenon is the opposite to the behavior of some well studied iterative numerical schemes such as [[Jacobi method]]. Deeper neural networks have been observed to be more biased towards low frequency functions.<ref>{{Cite journal|last1=Xu|first1=Zhiqin John|last2=Zhou|first2=Hanxu|title=Deep Frequency Principle Towards Understanding Why Deeper Learning is Faster |date=18 May 2021|url=https://ojs.aaai.org/index.php/AAAI/article/view/17261|journal=Proceedings of the AAAI Conference on Artificial Intelligence|volume=35|issue=12|pages=10541β10550|doi=10.1609/aaai.v35i12.17261|arxiv=2007.14313|s2cid=220831156|issn=2374-3468|access-date=5 October 2021|archive-date=5 October 2021|archive-url=https://web.archive.org/web/20211005142300/https://ojs.aaai.org/index.php/AAAI/article/view/17261|url-status=live}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)