Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stellar dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example on Jeans theorem and CBE on Uniform Sphere Potential === Generally for a time-independent system, Jeans theorem predicts that <math> f(\mathbf{x},\mathbf{v}) </math> is an implicit function of the position and velocity through a functional dependence on "constants of motion". For the uniform sphere, a solution for the Boltzmann Equation, written in spherical coordinates <math> (r,\theta,\phi) </math> and its velocity components <math> (V_r,V_\theta,V_\phi) </math> is <math display="block"> f(r,\theta,\varphi,V_r,V_\theta,V_\varphi) = {C_0 \over V_0^3} \sqrt{V_0^2 \over 2Q}, </math> where <math>C_0 = 2\pi^{-2} \rho_0 </math> is a normalisation constant, which has the dimension of (mass) density. And we define a (positive enthalpy-like dimension <math> \text{km}^2/\text{s}^2 </math>) Quantity <math display="block"> Q[\mathbf{x},\mathbf{v}] \equiv \left[0, \left(-V_0^2 - E \right) + {J^2 \over 2 r_0^2} \right]_\max \left[{J_z \over |J_z|}, 0\right]_\max .</math> Clearly anti-clockwise rotating stars with <math> J_z \le 0,~~ Q=0</math> are excluded. It is easy to see in spherical coordinates that <math> J^2 = r^2 V_t^2 = r^2 (V_\theta^2+V_\varphi^2), </math> <math> J_z = V_\varphi r \sin\theta, </math> <math> E = {V_r^2+V_t^2 \over 2} + \Phi(r), ~ V_t \equiv \sqrt{V_\theta^2+V_\varphi^2}</math> Insert the potential and these definitions of the orbital energy E and angular momentum J and its z-component Jz along every stellar orbit, we have <math display="block"> 2Q= \text{Heaviside}\left({V_\varphi \over |V_\varphi|}\right) \times \left[ V_0^2 \left(1-{r^2 \over r_0^2}\right) - V_r^2 - \left(1 - {r^2 \over r_0^2}\right) {\left(V_\theta^2+V_\varphi^2\right)}, 0 \right]_\max, </math> which implies <math> |V_r| \le V_e(r)</math>, and <math> |V_\theta|, V_\varphi </math> between zero and <math> V_0 </math>. To verify the above <math> E, ~J_z</math> being constants of motion in our spherical potential, we note <math display="block"> dE/dt = {\partial E\over \partial t} + \mathbf{v} {\partial E \over \partial \mathbf{x}} + (\mathbf{-\nabla \Phi}) {\partial E \over \partial \mathbf{v}} </math> <math display="block"> dE/dt = {\partial \Phi\over \partial t} + \mathbf{v} {\partial \Phi \over \partial \mathbf{x}} + (\mathbf{-\nabla \Phi}) \mathbf{v} = {\partial \Phi\over \partial t} =0 </math> for any "steady state" potential. <math display="block"> dJ_z/dt = {\partial J_z\over \partial t} + {\partial J_z \over \partial \mathbf{x}} \cdot \mathbf{v} - (\mathbf{\nabla \Phi}) \cdot {\partial J_z \over \partial \mathbf{v}}, </math> which reduces to <math> dJ_z/dt = 0 + [(V_y)V_x + (-V_x)V_y] - \left[(-y) {x \over R}{\partial \Phi(R,z) \over \partial R} + (x) {y\over R}{\partial \Phi(R,z) \over \partial R}\right] = 0 </math> around the z-axis of any axisymmetric potential, where <math display="inline">R=\sqrt{x^2+y^2} </math>. Likewise the x and y components of the angular momentum are also conserved for a spherical potential. Hence <math> dJ/dt =0 </math>. So for any time-independent spherical potential (including our uniform sphere model), the orbital energy E and angular momentum J and its z-component Jz along every stellar orbit satisfy <math display="block"> dE[\mathbf{x},\mathbf{v}]/dt = dJ[\mathbf{x},\mathbf{v}]/dt= dJ_z[\mathbf{x},\mathbf{v}]/dt =0 .</math> Hence using the chain rule, we have <math display="block"> {d \over dt} Q(E[\mathbf{x},\mathbf{v}],J[\mathbf{x},\mathbf{v}],J_z[\mathbf{x},\mathbf{v}]) = {\partial Q \over \partial E} {dE \over dt} + {\partial Q \over \partial J_z} {dJ_z \over dt} + {\partial Q \over \partial J} {dJ \over dt} = 0 ,</math> i.e., <math display="inline"> {d \over dt} f= f'(Q) {d Q[\mathbf{x},\mathbf{v}]\over dt} =0 </math>, so that CBE is satisfied, i.e., our <math display="block"> f(\mathbf{x},\mathbf{v}) = f(E[\mathbf{x},\mathbf{v}],J[\mathbf{x},\mathbf{v}],J_z[\mathbf{x},\mathbf{v}]) </math> is a solution to the Collisionless Boltzmann Equation for our static spherical potential.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)