Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arithmetic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Divisor sum convolutions === Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the [[Power series#Multiplication and division|product of two power series]]: : <math> \left(\sum_{n=0}^\infty a_n x^n\right)\left(\sum_{n=0}^\infty b_n x^n\right) = \sum_{i=0}^\infty \sum_{j=0}^\infty a_i b_j x^{i+j} = \sum_{n=0}^\infty \left(\sum_{i=0}^n a_i b_{n-i}\right) x^n = \sum_{n=0}^\infty c_n x^n .</math> The sequence <math>c_n = \sum_{i=0}^n a_i b_{n-i}</math> is called the [[convolution]] or the [[Cauchy product]] of the sequences ''a''<sub>''n''</sub> and ''b''<sub>''n''</sub>. {{br}}These formulas may be proved analytically (see [[Eisenstein series]]) or by elementary methods.<ref>Williams, ch. 13; Huard, et al. (external links).</ref> : <math> \sigma_3(n) = \frac{1}{5}\left\{6n\sigma_1(n)-\sigma_1(n) + 12\sum_{0<k<n}\sigma_1(k)\sigma_1(n-k)\right\}. </math> <ref name="Ramanujan, p. 146">Ramanujan, ''On Certain Arithmetical Functions'', Table IV; ''Papers'', p. 146</ref> : <math> \sigma_5(n) = \frac{1}{21}\left\{10(3n-1)\sigma_3(n)+\sigma_1(n) + 240\sum_{0<k<n}\sigma_1(k)\sigma_3(n-k)\right\}. </math> <ref name="Koblitz, ex. III.2.8">Koblitz, ex. III.2.8</ref> : <math> \begin{align} \sigma_7(n) &=\frac{1}{20}\left\{21(2n-1)\sigma_5(n)-\sigma_1(n) + 504\sum_{0<k<n}\sigma_1(k)\sigma_5(n-k)\right\}\\ &=\sigma_3(n) + 120\sum_{0<k<n}\sigma_3(k)\sigma_3(n-k). \end{align} </math> <ref name="Koblitz, ex. III.2.8" /><ref>Koblitz, ex. III.2.3</ref> : <math> \begin{align} \sigma_9(n) &= \frac{1}{11}\left\{10(3n-2)\sigma_7(n)+\sigma_1(n) + 480\sum_{0<k<n}\sigma_1(k)\sigma_7(n-k)\right\}\\ &= \frac{1}{11}\left\{21\sigma_5(n)-10\sigma_3(n) + 5040\sum_{0<k<n}\sigma_3(k)\sigma_5(n-k)\right\}. \end{align} </math> <ref name="Ramanujan, p. 146" /><ref>Koblitz, ex. III.2.2</ref> : <math> \tau(n) = \frac{65}{756}\sigma_{11}(n) + \frac{691}{756}\sigma_{5}(n) - \frac{691}{3}\sum_{0<k<n}\sigma_5(k)\sigma_5(n-k), </math> where ''τ''(''n'') is Ramanujan's function. <ref>Koblitz, ex. III.2.4</ref><ref>Apostol, ''Modular Functions ...'', Ex. 6.10</ref> Since ''σ''<sub>''k''</sub>(''n'') (for natural number ''k'') and ''τ''(''n'') are integers, the above formulas can be used to prove congruences<ref>Apostol, ''Modular Functions...'', Ch. 6 Ex. 10</ref> for the functions. See [[Ramanujan tau function]] for some examples. Extend the domain of the partition function by setting {{math|1=''p''(0) = 1.}} : <math> p(n)=\frac{1}{n}\sum_{1\le k\le n}\sigma(k)p(n-k). </math> <ref>G.H. Hardy, S. Ramannujan, ''Asymptotic Formulæ in Combinatory Analysis'', § 1.3; in Ramannujan, ''Papers'' p. 279</ref> This recurrence can be used to compute ''p''(''n'').
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)