Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Representation by continued fractions (Jacobi-type ''{{mvar|J}}''-fractions) === ==== Definitions ==== Expansions of (formal) ''Jacobi-type'' and ''Stieltjes-type'' [[generalized continued fraction|continued fractions]] (''{{mvar|J}}-fractions'' and ''{{mvar|S}}-fractions'', respectively) whose {{mvar|h}}th rational convergents represent [[Order of accuracy|{{math|2''h''}}-order accurate]] power series are another way to express the typically divergent ordinary generating functions for many special one and two-variate sequences. The particular form of the [[Jacobi-type continued fraction]]s ({{mvar|J}}-fractions) are expanded as in the following equation and have the next corresponding power series expansions with respect to {{mvar|z}} for some specific, application-dependent component sequences, {{math|{ab<sub>''i''</sub>}<nowiki/>}} and {{math|{''c''<sub>''i''</sub>}<nowiki/>}}, where {{math|''z'' β 0}} denotes the formal variable in the second power series expansion given below:<ref>For more complete information on the properties of {{mvar|J}}-fractions see: *{{cite journal |first=P. |last=Flajolet |title=Combinatorial aspects of continued fractions |journal=Discrete Mathematics |volume=32 |issue=2 |pages=125β161 |year=1980 |doi=10.1016/0012-365X(80)90050-3 |url=http://algo.inria.fr/flajolet/Publications/Flajolet80b.pdf}} *{{cite book |first=H.S. |last=Wall |title=Analytic Theory of Continued Fractions |url=https://books.google.com/books?id=86ReDwAAQBAJ&pg=PR7 |date=2018 |orig-year=1948 |publisher=Dover |isbn=978-0-486-83044-5}}</ref> <math display="block">\begin{align} J^{[\infty]}(z) & = \cfrac{1}{1-c_1 z-\cfrac{\text{ab}_2 z^2}{1-c_2 z-\cfrac{\text{ab}_3 z^2}{\ddots}}} \\[4px] & = 1 + c_1 z + \left(\text{ab}_2+c_1^2\right) z^2 + \left(2 \text{ab}_2 c_1+c_1^3 + \text{ab}_2 c_2\right) z^3 + \cdots \end{align}</math> The coefficients of <math>z^n</math>, denoted in shorthand by {{math|''j<sub>n</sub>'' β [''z<sup>n</sup>''] ''J''<sup>[β]</sup>(''z'')}}, in the previous equations correspond to matrix solutions of the equations: <math display="block">\begin{bmatrix}k_{0,1} & k_{1,1} & 0 & 0 & \cdots \\ k_{0,2} & k_{1,2} & k_{2,2} & 0 & \cdots \\ k_{0,3} & k_{1,3} & k_{2,3} & k_{3,3} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix}k_{0,0} & 0 & 0 & 0 & \cdots \\ k_{0,1} & k_{1,1} & 0 & 0 & \cdots \\ k_{0,2} & k_{1,2} & k_{2,2} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \cdot \begin{bmatrix}c_1 & 1 & 0 & 0 & \cdots \\ \text{ab}_2 & c_2 & 1 & 0 & \cdots \\ 0 & \text{ab}_3 & c_3 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}, </math> where {{math|''j''<sub>0</sub> β‘ ''k''<sub>0,0</sub> {{=}} 1}}, {{math|''j<sub>n</sub>'' {{=}} ''k''<sub>0,''n''</sub>}} for {{math|''n'' β₯ 1}}, {{math|''k''<sub>''r'',''s''</sub> {{=}} 0}} if {{math|''r'' > ''s''}}, and where for all integers {{math|''p'', ''q'' β₯ 0}}, we have an ''addition formula'' relation given by: <math display="block">j_{p+q} = k_{0,p} \cdot k_{0,q} + \sum_{i=1}^{\min(p, q)} \text{ab}_2 \cdots \text{ab}_{i+1} \times k_{i,p} \cdot k_{i,q}. </math> ==== Properties of the ''{{mvar|h}}''th convergent functions ==== For {{math|''h'' β₯ 0}} (though in practice when {{math|''h'' β₯ 2}}), we can define the rational {{mvar|h}}th convergents to the infinite {{mvar|J}}-fraction, {{math|''J''<sup>[β]</sup>(''z'')}}, expanded by: <math display="block">\operatorname{Conv}_h(z) := \frac{P_h(z)}{Q_h(z)} = j_0 + j_1 z + \cdots + j_{2h-1} z^{2h-1} + \sum_{n = 2h}^\infty \widetilde{j}_{h,n} z^n</math> component-wise through the sequences, {{math|''P<sub>h</sub>''(''z'')}} and {{math|''Q<sub>h</sub>''(''z'')}}, defined recursively by: <math display="block">\begin{align} P_h(z) & = (1-c_h z) P_{h-1}(z) - \text{ab}_h z^2 P_{h-2}(z) + \delta_{h,1} \\ Q_h(z) & = (1-c_h z) Q_{h-1}(z) - \text{ab}_h z^2 Q_{h-2}(z) + (1-c_1 z) \delta_{h,1} + \delta_{0,1}. \end{align}</math> Moreover, the rationality of the convergent function {{math|Conv<sub>''h''</sub>(''z'')}} for all {{math|''h'' β₯ 2}} implies additional finite difference equations and congruence properties satisfied by the sequence of {{math|''j<sub>n</sub>''}}, ''and'' for {{math|''M<sub>h</sub>'' β ab<sub>2</sub> β― ab<sub>''h'' + 1</sub>}} if {{math|''h'' β ''M''<sub>''h''</sub>}} then we have the congruence <math display="block">j_n \equiv [z^n] \operatorname{Conv}_h(z) \pmod h, </math> for non-symbolic, determinate choices of the parameter sequences {{math|{ab<sub>''i''</sub>}<nowiki/>}} and {{math|{''c''<sub>''i''</sub>}<nowiki/>}} when {{math|''h'' β₯ 2}}, that is, when these sequences do not implicitly depend on an auxiliary parameter such as {{mvar|q}}, {{mvar|x}}, or {{mvar|R}} as in the examples contained in the table below. ==== Examples ==== The next table provides examples of closed-form formulas for the component sequences found computationally (and subsequently proved correct in the cited references<ref>See the following articles: *{{cite arXiv |first=Maxie D. |last=Schmidt |eprint=1612.02778 |title=Continued Fractions for Square Series Generating Functions |year=2016 |class=math.NT }} *{{cite journal |author-mask= 1 |first=Maxie D. |last=Schmidt |title=Jacobi-Type Continued Fractions for the Ordinary Generating Functions of Generalized Factorial Functions |journal=Journal of Integer Sequences |volume=20 |id=17.3.4 |year=2017 |arxiv=1610.09691 |url=https://cs.uwaterloo.ca/journals/JIS/VOL20/Schmidt/schmidt14.html}} *{{cite arXiv |author-mask= 1 |first=Maxie D. |last=Schmidt |eprint=1702.01374 |title=Jacobi-Type Continued Fractions and Congruences for Binomial Coefficients Modulo Integers ''h'' β₯ 2|year=2017|class=math.CO }} </ref>) in several special cases of the prescribed sequences, {{math|''j<sub>n</sub>''}}, generated by the general expansions of the {{mvar|J}}-fractions defined in the first subsection. Here we define {{math|0 < {{abs|''a''}}, {{abs|''b''}}, {{abs|''q''}} < 1}} and the parameters <math>R, \alpha \isin \mathbb{Z}^+</math> and {{mvar|x}} to be indeterminates with respect to these expansions, where the prescribed sequences enumerated by the expansions of these {{mvar|J}}-fractions are defined in terms of the [[q-Pochhammer symbol|{{mvar|q}}-Pochhammer symbol]], [[Pochhammer symbol]], and the [[binomial coefficients]]. {| class="wikitable" |- ! <math>j_n</math> !! <math>c_1</math> !! <math>c_i (i \geq 2)</math> !! <math>\mathrm{ab}_i (i \geq 2)</math> |- | <math>q^{n^2}</math> || <math>q</math> || <math>q^{2h-3}\left(q^{2h}+q^{2h-2}-1\right)</math> || <math>q^{6h-10}\left(q^{2h-2}-1\right)</math> |- | <math>(a; q)_n</math> || <math>1-a</math> || <math>q^{h-1} - a q^{h-2} \left(q^{h} + q^{h-1} - 1\right)</math> || <math>a q^{2h-4} \left(a q^{h-2}-1\right)\left(q^{h-1}-1\right)</math> |- | <math>\left(z q^{-n}; q\right)_n</math> || <math>\frac{q-z}{q}</math> || <math>\frac{q^h - z - qz + q^h z}{q^{2h-1}}</math> || <math>\frac{\left(q^{h-1}-1\right) \left(q^{h-1}-z\right) \cdot z}{q^{4h-5}}</math> |- | <math>\frac{(a; q)_n}{(b; q)_n}</math> || <math>\frac{1-a}{1-b}</math> || <math>\frac{q^{i-2}\left(q+ab q^{2i-3}+a(1-q^{i-1}-q^i)+b(q^{i}-q-1)\right)}{\left(1-bq^{2i-4}\right)\left(1-bq^{2i-2}\right)}</math> || <math>\frac{q^{2i-4}\left(1-bq^{i-3}\right)\left(1-aq^{i-2}\right)\left(a-bq^{i-2}\right)\left(1-q^{i-1}\right)}{\left(1-bq^{2i-5}\right)\left(1-bq^{2i-4}\right)^2\left(1-bq^{2i-3}\right)}</math> |- | <math>\alpha^n \cdot \left(\frac{R}{\alpha}\right)_n</math> || <math>R</math> || <math>R+2\alpha (i-1)</math> || <math>(i-1)\alpha\bigl(R+(i-2)\alpha\bigr)</math> |- | <math>(-1)^n \binom{x}{n}</math> || <math>-x</math> || <math>-\frac{(x+2(i-1)^2)}{(2i-1)(2i-3)}</math> ||<math>\begin{cases}-\dfrac{(x-i+2)(x+i-1)}{4 \cdot (2i-3)^2} & \text{for }i \geq 3; \\[4px] -\frac{1}{2}x(x+1) & \text{for }i = 2. \end{cases}</math> |- | <math>(-1)^n \binom{x+n}{n}</math> || <math>-(x+1)</math> || <math>\frac{\bigl(x-2i(i-2)-1\bigr)}{(2i-1)(2i-3)}</math> ||<math>\begin{cases}-\dfrac{(x-i+2)(x+i-1)}{4 \cdot (2i-3)^2} & \text{for }i \geq 3; \\[4px] -\frac{1}{2}x(x+1) & \text{for }i = 2. \end{cases}</math> |} The radii of convergence of these series corresponding to the definition of the Jacobi-type {{mvar|J}}-fractions given above are in general different from that of the corresponding power series expansions defining the ordinary generating functions of these sequences.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)