Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit of a function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== If a function {{mvar|f}} is real-valued, then the limit of {{mvar|f}} at {{mvar|p}} is {{mvar|L}} if and only if both the right-handed limit and left-handed limit of {{mvar|f}} at {{mvar|p}} exist and are equal to {{mvar|L}}.{{sfnp|Swokowski|1979|p=73}} The function {{mvar|f}} is [[continuous function|continuous]] at {{mvar|p}} if and only if the limit of {{math|''f''(''x'')}} as {{mvar|x}} approaches {{mvar|p}} exists and is equal to {{math|''f''(''p'')}}. If {{math|''f'' : ''M'' → ''N''}} is a function between metric spaces {{mvar|M}} and {{mvar|N}}, then it is equivalent that {{mvar|f}} transforms every sequence in {{mvar|M}} which converges towards {{mvar|p}} into a sequence in {{mvar|N}} which converges towards {{math|''f''(''p'')}}. If {{mvar|N}} is a [[normed vector space]], then the limit operation is linear in the following sense: if the limit of {{math|''f''(''x'')}} as {{mvar|x}} approaches {{mvar|p}} is {{mvar|L}} and the limit of {{math|''g''(''x'')}} as {{mvar|x}} approaches {{mvar|p}} is {{mvar|P}}, then the limit of {{math|''f''(''x'') + g(''x'')}} as {{mvar|x}} approaches {{mvar|p}} is {{math|''L'' + ''P''}}. If {{mvar|a}} is a scalar from the base [[field (mathematics)|field]], then the limit of {{math|''af''(''x'')}} as {{mvar|x}} approaches {{mvar|p}} is {{mvar|aL}}. If {{mvar|f}} and {{mvar|g}} are real-valued (or complex-valued) functions, then taking the limit of an operation on {{math|''f''(''x'')}} and {{math|''g''(''x'')}} (e.g., {{math|''f'' + ''g''}}, {{math|''f'' − ''g''}}, {{math|''f'' × ''g''}}, {{math|''f'' / ''g''}}, {{mvar|f{{sup| g}}}}) under certain conditions is compatible with the operation of limits of {{math|''f''(''x'')}} and {{math|''g''(''x'')}}. This fact is often called the '''algebraic limit theorem'''. The main condition needed to apply the following rules is that the limits on the right-hand sides of the equations exist (in other words, these limits are finite values including 0). Additionally, the identity for division requires that the denominator on the right-hand side is non-zero (division by 0 is not defined), and the identity for exponentiation requires that the base is positive, or zero while the exponent is positive (finite). <math display=block>\begin{array}{lcl} \displaystyle \lim_{x \to p} (f(x) + g(x)) & = & \displaystyle \lim_{x \to p} f(x) + \lim_{x \to p} g(x) \\ \displaystyle \lim_{x \to p} (f(x) - g(x)) & = & \displaystyle \lim_{x \to p} f(x) - \lim_{x \to p} g(x) \\ \displaystyle \lim_{x \to p} (f(x)\cdot g(x)) & = & \displaystyle \lim_{x \to p} f(x) \cdot \lim_{x \to p} g(x) \\ \displaystyle \lim_{x \to p} (f(x)/g(x)) & = & \displaystyle {\lim_{x \to p} f(x) / \lim_{x \to p} g(x)} \\ \displaystyle \lim_{x \to p} f(x)^{g(x)} & = & \displaystyle {\lim_{x \to p} f(x) ^ {\lim_{x \to p} g(x)}} \end{array}</math> These rules are also valid for one-sided limits, including when {{mvar|p}} is ∞ or −∞. In each rule above, when one of the limits on the right is ∞ or −∞, the limit on the left may sometimes still be determined by the following rules. <math display=block>\begin{array}{rcl} q + \infty & = & \infty \text{ if } q \neq -\infty \\[8pt] q \times \infty & = & \begin{cases} \infty & \text{if } q > 0 \\ -\infty & \text{if } q < 0 \end{cases} \\[6pt] \displaystyle \frac q \infty & = & 0 \text{ if } q \neq \infty \text{ and } q \neq -\infty \\[6pt] \infty^q & = & \begin{cases} 0 & \text{if } q < 0 \\ \infty & \text{if } q > 0 \end{cases} \\[4pt] q^\infty & = & \begin{cases} 0 & \text{if } 0 < q < 1 \\ \infty & \text{if } q > 1 \end{cases} \\[4pt] q^{-\infty} & = & \begin{cases} \infty & \text{if } 0 < q < 1 \\ 0 & \text{if } q > 1 \end{cases} \end{array}</math> (see also [[Extended real number line]]). In other cases the limit on the left may still exist, although the right-hand side, called an ''[[indeterminate form]]'', does not allow one to determine the result. This depends on the functions {{mvar|f}} and {{mvar|g}}. These indeterminate forms are: <math display=block>\begin{array}{cc} \displaystyle \frac{0}{0} & \displaystyle \frac{\pm \infty}{\pm \infty} \\[6pt] 0 \times \pm \infty & \infty + -\infty \\[8pt] \qquad 0^0 \qquad & \qquad \infty^0 \qquad \\[8pt] 1^{\pm \infty} \end{array}</math> See further [[#L'Hôpital's rule|L'Hôpital's rule]] below and [[Indeterminate form]]. ===Limits of compositions of functions=== In general, from knowing that <math>\lim_{y \to b} f(y) = c</math> and <math>\lim_{x \to a} g(x) = b,</math> it does ''not'' follow that <math>\lim_{x \to a} f(g(x)) = c.</math> However, this "chain rule" does hold if one of the following ''additional'' conditions holds: *{{math|1=''f''(''b'') = ''c''}} (that is, {{mvar|f}} is continuous at {{mvar|b}}), or *{{mvar|g}} does not take the value {{mvar|b}} near {{mvar|a}} (that is, there exists a {{math|''δ'' > 0}} such that if {{math|0 < {{abs|''x'' − ''a''}} < ''δ''}} then {{math|{{abs|''g''(''x'') − ''b''}} > 0}}). As an example of this phenomenon, consider the following function that violates both additional restrictions: <math display=block>f(x) = g(x) = \begin{cases} 0 & \text{if } x\neq 0 \\ 1 & \text{if } x=0 \end{cases}</math> Since the value at {{math|''f''(0)}} is a [[removable discontinuity]], <math display=block>\lim_{x \to a} f(x) = 0</math> for all {{mvar|a}}. Thus, the naïve chain rule would suggest that the limit of {{math|''f''(''f''(''x''))}} is 0. However, it is the case that <math display=block>f(f(x))=\begin{cases} 1 & \text{if } x\neq 0 \\ 0 & \text{if } x = 0 \end{cases}</math> and so <math display=block>\lim_{x \to a} f(f(x)) = 1</math> for all {{mvar|a}}. ===Limits of special interest=== {{main|List of limits}} ====Rational functions==== For {{mvar|n}} a nonnegative integer and constants <math>a_1, a_2, a_3,\ldots, a_n</math> and <math>b_1, b_2, b_3,\ldots, b_n,</math> <math display=block>\lim_{x \to \infty} \frac{a_1 x^n + a_2 x^{n-1} + a_3 x^{n-2} + \dots + a_n}{b_1 x^n + b_2 x^{n-1} + b_3 x^{n-2} + \dots + b_n} = \frac{a_1}{b_1}</math> This can be proven by dividing both the numerator and denominator by {{mvar|x{{sup|n}}}}. If the numerator is a polynomial of higher degree, the limit does not exist. If the denominator is of higher degree, the limit is 0. ====Trigonometric functions==== <math display=block>\begin{array}{lcl} \displaystyle \lim_{x \to 0} \frac{\sin x}{x} & = & 1 \\[4pt] \displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x} & = & 0 \end{array}</math> ====Exponential functions==== <math display=block>\begin{array}{lcl} \displaystyle \lim_{x \to 0} (1+x)^{\frac{1}{x}} & = & \displaystyle \lim_{r \to \infty} \left(1+\frac{1}{r}\right)^r = e \\[4pt] \displaystyle \lim_{x \to 0} \frac{e^{x}-1}{x} & = & 1 \\[4pt] \displaystyle \lim_{x \to 0} \frac{e^{ax}-1}{bx} & = & \displaystyle \frac{a}{b} \\[4pt] \displaystyle \lim_{x \to 0} \frac{c^{ax}-1}{bx} & = & \displaystyle \frac{a}{b}\ln c \\[4pt] \displaystyle \lim_{x \to 0^+} x^x & = & 1 \end{array}</math> ====Logarithmic functions==== <math display=block>\begin{array}{lcl} \displaystyle \lim_{x \to 0} \frac{\ln(1+x)}{x} & = & 1 \\[4pt] \displaystyle \lim_{x \to 0} \frac{\ln(1+ax)}{bx} & = & \displaystyle \frac{a}{b} \\[4pt] \displaystyle \lim_{x \to 0} \frac{\log_c(1+ax)}{bx} & = & \displaystyle \frac{a}{b\ln c} \end{array}</math> ===L'Hôpital's rule=== {{Main|l'Hôpital's rule}} This rule uses [[derivative]]s to find limits of [[indeterminate forms]] {{math|0/0}} or {{math|±∞/∞}}, and only applies to such cases. Other indeterminate forms may be manipulated into this form. Given two functions {{math|''f''(''x'')}} and {{math|''g''(''x'')}}, defined over an [[open interval]] {{mvar|I}} containing the desired limit point {{mvar|c}}, then if: # <math>\lim_{x \to c}f(x)=\lim_{x \to c}g(x)=0,</math> or <math>\lim_{x \to c}f(x)=\pm\lim_{x \to c}g(x) = \pm\infty,</math> and # <math>f</math> and <math>g</math> are differentiable over <math>I \setminus \{c\},</math> and # <math>g'(x)\neq 0</math> for all <math> x \in I \setminus \{c\},</math> and # <math>\lim_{x\to c}\tfrac{f'(x)}{g'(x)}</math> exists, then: <math display=block>\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.</math> Normally, the first condition is the most important one. For example: <math>\lim_{x \to 0} \frac{\sin (2x)}{\sin (3x)} = \lim_{x \to 0} \frac{2 \cos (2x)}{3 \cos (3x)} = \frac{2 \sdot 1}{3 \sdot 1} = \frac{2}{3}.</math> ===Summations and integrals=== Specifying an infinite bound on a summation or integral is a common shorthand for specifying a limit. A short way to write the limit <math>\lim_{n \to \infty} \sum_{i=s}^n f(i) </math> is <math>\sum_{i=s}^\infty f(i).</math> An important example of limits of sums such as these are [[Series (mathematics)|series]]. A short way to write the limit <math>\lim_{x \to \infty} \int_a^x f(t) \; dt </math> is <math>\int_a^\infty f(t) \; dt.</math> A short way to write the limit <math>\lim_{x \to -\infty} \int_x^b f(t) \; dt </math> is <math>\int_{-\infty}^b f(t) \; dt.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)