Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quaternion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Books and publications=== {{refbegin|30em}} *{{cite book |last=Adler |first=Stephen L. |title=Quaternionic quantum mechanics and quantum fields |publisher=Oxford University Press |year=1995 |isbn=0-19-506643-X |lccn=94006306 |series=International series of monographs on physics |volume=88|ref=none }} *{{cite journal |first=Simon L. |last=Altmann |title=Hamilton, Rodrigues, and the Quaternion Scandal |journal=Mathematics Magazine |volume=62 |issue=5 |pages=291–308 |year=1989 |doi=10.1080/0025570X.1989.11977459 |ref=none }} *{{cite book |last1=Binz |first1=Ernst |first2=Sonja |last2=Pods |chapter=1. The Skew Field of Quaternions |title=Geometry of Heisenberg Groups |publisher=[[American Mathematical Society]] |year=2008 |isbn=978-0-8218-4495-3 |ref=none }} *{{cite EB1911|wstitle=Algebra|ref=none }} (''See section on quaternions.'') *{{cite book |last=Clerk Maxwell |first=James |author-link=James Clerk Maxwell |year=1873 |title=[[A Treatise on Electricity and Magnetism]] |publisher=Clarendon Press |location=Oxford |ref=none}} *{{cite book |last1=Conway |first1=John Horton |author-link=John Horton Conway |last2=Smith |first2=Derek A. |title=On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry |publisher=A.K. Peters |year=2003 |isbn=1-56881-134-9 }} ([http://nugae.wordpress.com/2007/04/25/on-quaternions-and-octonions/ review]). *{{cite book |last=Crowe |first=Michael J. |year=1967 |title=[[A History of Vector Analysis]]: The Evolution of the Idea of a Vectorial System |publisher=University of Notre Dame Press |ref=none}} Surveys the major and minor vector systems of the 19th century (Hamilton, Möbius, Bellavitis, Clifford, Grassmann, Tait, Peirce, Maxwell, Macfarlane, MacAuley, Gibbs, Heaviside). *{{cite book |last1=Doran |first1=Chris J.L. |first2=Anthony N. |last2=Lasenby |title=Geometric Algebra for Physicists |year=2003 |publisher=Cambridge University Press |isbn=978-0-521-48022-2 |author1-link=Chris J. L. Doran|ref=none }} *{{cite book |last=Du Val |first=Patrick |author-link=Patrick du Val |title=Homographies, quaternions, and rotations |publisher=Clarendon Press |series=Oxford mathematical monographs |year=1964 |lccn=64056979|ref=none }} *{{cite journal |last=Evans |first=D.J. |title=On the Representation of Orientation Space |journal=Mol. Phys. |volume=34 |issue=2 |pages=317–325 |year=1977 |doi=10.1080/00268977700101751 |bibcode=1977MolPh..34..317E |ref=none }} For molecules that can be regarded as classical rigid bodies, [[molecular dynamics]] computer simulation employs quaternions. *{{ cite book |last1=Eves |first1=Howard |title=An Introduction to the History of Mathematics |edition=4th | location=New York |publisher=Holt, Rinehart and Winston |year=1976 |isbn=0-03-089539-1 }} *{{cite journal |last1=Finkelstein |first1=David |first2=Josef M. |last2=Jauch |first3=Samuel |last3=Schiminovich |first4=David |last4=Speiser |title=Foundations of quaternion quantum mechanics |journal=J. Math. Phys. |volume=3 |pages=207–220 |year=1962 |issue=2 |doi=10.1063/1.1703794 |bibcode=1962JMP.....3..207F |s2cid=121453456 |url=https://archive-ouverte.unige.ch/unige:162173 |ref=none }} *{{cite journal |first=Fuzhen |last=Zhang |title=Quaternions and Matrices of Quaternions |journal=Linear Algebra and Its Applications |volume=251 |pages=21–57 |year=1997 |doi=10.1016/0024-3795(95)00543-9 |doi-access=free |ref=none }} *{{cite book |last=Goldman |first=Ron |title=Rethinking Quaternions: Theory and Computation|year=2010|publisher=Morgan & Claypool |isbn=978-1-60845-420-4|ref=none }} *{{cite book |last1=Gürlebeck |first1=Klaus |last2=Sprössig |first2=Wolfgang |title=Quaternionic and Clifford calculus for physicists and engineers |publisher=Wiley |year=1997 |isbn=0-471-96200-7 |series=Mathematical methods in practice |volume=1 |lccn=98169958|ref=none }} *{{cite journal |author-link=William Rowan Hamilton |first=William Rowan |last=Hamilton |title=On quaternions, or on a new system of imaginaries in algebra |journal=Philosophical Magazine |volume=25 |issue=3 |pages=489–495 |year=1844 |doi=10.1080/14786444408645047 |url=https://zenodo.org/record/1431043 |ref=none }} *[[William Rowan Hamilton|Hamilton, William Rowan]] (1853), "''[https://web.archive.org/web/20140808040037/http://www.ugcs.caltech.edu/~presto/papers/Quaternions-Britannica.ps.bz2 Lectures on Quaternions]''". Royal Irish Academy. *Hamilton (1866) ''[https://archive.org/details/bub_gb_fIRAAAAAIAAJ Elements of Quaternions]'' [[University of Dublin]] Press. Edited by William Edwin Hamilton, son of the deceased author. *Hamilton (1899) ''Elements of Quaternions'' volume I, (1901) volume II. Edited by [[Charles Jasper Joly]]; published by [[Longmans, Green & Co.]] *{{cite book |last=Hanson |first=Andrew J. |title=Visualizing Quaternions |publisher=Elsevier |year=2006 |isbn=0-12-088400-3 |url=http://www.cs.indiana.edu/~hanson/quatvis/|ref=none }} *{{cite book |last1=Hazewinkel |first1=Michiel |author-link=Michiel Hazewinkel |first2=Nadiya |last2=Gubareni |first3=Vladimir V. |last3=Kirichenko |title=Algebras, rings and modules |publisher=Springer |year=2004 |isbn=1-4020-2690-0 |volume=1 |url=https://books.google.com/books?id=AibpdVNkFDYC }} *{{cite arXiv |last=Jack |first=P.M. |title=Physical space as a quaternion structure, I: Maxwell equations. A brief Note |date=2003 |eprint=math-ph/0307038|ref=none }} *{{cite book |last=Joly |first=Charles Jasper |title=A manual of quaternions |publisher=Macmillan |year=1905 |lccn=05036137|ref=none }} *{{cite book |last1=Kantor |first1=I.L. |last2=Solodnikov |first2=A.S. |title=Hypercomplex numbers, an elementary introduction to algebras |publisher=Springer-Verlag |year=1989 |isbn=0-387-96980-2 |ref=none }} *{{cite book |last=Kravchenko |first=Vladislav |title=Applied Quaternionic Analysis |publisher=Heldermann Verlag |year=2003 |isbn=3-88538-228-8 |ref=none }} *{{cite book |last=Kuipers |first=Jack |title=Quaternions and Rotation Sequences: A Primer With Applications to Orbits, Aerospace, and Virtual Reality |publisher=[[Princeton University Press]] |year=2002 |isbn=0-691-10298-8 |ref=none }} *{{cite book |last=Macfarlane |first=Alexander |author-link=Alexander Macfarlane |title=Vector analysis and quaternions |publisher=Wiley |edition=4th |year=1906 |lccn=16000048|ref=none }} *{{cite journal |last=Pujol |first=Jose |title=On Hamilton's Nearly-Forgotten Early Work on the Relation between Rotations and Quaternions and on the Composition of Rotations |journal=The American Mathematical Monthly |volume=121 |issue=6 |pages=515–522 |year=2014 |doi=10.4169/amer.math.monthly.121.06.515 |s2cid=1543951 |ref=none }} *{{cite book |last=Tait |first=Peter Guthrie |author-link=Peter Guthrie Tait |year=1873|title=An elementary treatise on quaternions |edition=2nd |location=Cambridge |publisher=The University Press |ref=none}} *{{cite book |last=Vince |first=John A. |title=Geometric Algebra for Computer Graphics |publisher=Springer |year=2008 |isbn=978-1-84628-996-5 |ref=none }} *{{cite book |last=Voight |first=John |title=Quaternion Algebras |series=Graduate Texts in Mathematics |publisher=Springer |year=2021 |volume=288 |isbn=978-3-030-57467-3 |doi=10.1007/978-3-030-56694-4 |doi-access=free |ref=none }} *{{cite book |last=Ward |first=J.P. |title=Quaternions and Cayley Numbers: Algebra and Applications |publisher=Kluwer Academic |year=1997 |isbn=0-7923-4513-4 |ref=none }} {{refend}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)