Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reinforcement learning
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Further reading == * {{cite journal |last1=Annaswamy |first1=Anuradha M. |title=Adaptive Control and Intersections with Reinforcement Learning |journal=Annual Review of Control, Robotics, and Autonomous Systems |date=3 May 2023 |volume=6 |issue=1 |pages=65β93 |doi=10.1146/annurev-control-062922-090153 |s2cid=255702873 |language=en |issn=2573-5144|doi-access=free }} * {{cite journal|last1 = Auer|first1 = Peter|last2 = Jaksch|first2 = Thomas |last3 = Ortner|first3 = Ronald |year = 2010|title = Near-optimal regret bounds for reinforcement learning|url = http://jmlr.csail.mit.edu/papers/v11/jaksch10a.html|journal = Journal of Machine Learning Research|volume = 11|pages = 1563β1600 |author-link1 = Peter Auer}} * {{cite book|url=http://www.mit.edu/~dimitrib/RLbook.html|last1=Bertsekas |first1=Dimitri P.|title= REINFORCEMENT LEARNING AND OPTIMAL CONTROL |date= 2023 |publisher=Athena Scientific |orig-date=2019 |isbn=978-1-886-52939-7|edition=1st}} * {{cite book|url = http://www.dcsc.tudelft.nl/rlbook/|title = Reinforcement Learning and Dynamic Programming using Function Approximators|last1 = Busoniu|first1 = Lucian|last2 = Babuska|first2 = Robert|last3 = De Schutter|first3 = Bart|last4 = Ernst|first4 = Damien|publisher = Taylor & Francis CRC Press|year = 2010|isbn = 978-1-4398-2108-4|author-link3 = Bart De Schutter }} * {{cite journal | doi = 10.1561/2200000071 | last1 = FranΓ§ois-Lavet | first1 = Vincent | last2 = Henderson | first2 = Peter | last3 = Islam | first3 = Riashat | last4 = Bellemare | first4 = Marc G. | last5 = Pineau | first5 = Joelle | title = An Introduction to Deep Reinforcement Learning | journal = Foundations and Trends in Machine Learning | volume = 11 | issue = 3β4 | pages = 219β354 | year = 2018 | arxiv = 1811.12560 | bibcode = 2018arXiv181112560F | s2cid = 54434537 }} * {{cite book|url=https://link.springer.com/book/10.1007/978-981-19-7784-8|title=Reinforcement Learning for Sequential Decision and Optimal Control|last1=Li |first1=Shengbo Eben |publisher= Springer Verlag, Singapore |year=2023 |doi=10.1007/978-981-19-7784-8 |isbn=978-9-811-97783-1 |edition=1st }} * {{cite book |last=Powell |first=Warren |title=Approximate dynamic programming: solving the curses of dimensionality |year=2011 |publisher=Wiley-Interscience |isbn= |url=http://www.castlelab.princeton.edu/adp.htm |access-date=2010-09-08 |archive-date=2016-07-31 |archive-url=https://web.archive.org/web/20160731230325/http://castlelab.princeton.edu/adp.htm |url-status=dead }} * {{cite journal | doi = 10.1007/BF00115009 | last = Sutton | first = Richard S. | author-link = Richard S. Sutton | title = Learning to predict by the method of temporal differences | journal = Machine Learning | volume = 3 | pages = 9β44 | year = 1988 | doi-access = free }} * {{cite book|url=http://incompleteideas.net/sutton/book/the-book.html|title=Reinforcement Learning: An Introduction|last1=Sutton|first1=Richard S.|last2=Barto|first2=Andrew G.|publisher=MIT Press|year=2018 |orig-date=1998 |isbn=978-0-262-03924-6|edition=2nd |author-link1=Richard S. Sutton|author-link2=Andrew Barto}} * {{cite conference|last1 = Szita|first1 = Istvan|last2 = Szepesvari|first2 = Csaba |year = 2010|title = Model-based Reinforcement Learning with Nearly Tight Exploration Complexity Bounds|url = http://www.icml2010.org/papers/546.pdf|publisher = Omnipress|pages = 1031β1038 |book-title = ICML 2010|url-status = dead|archive-url = https://web.archive.org/web/20100714095438/http://www.icml2010.org/papers/546.pdf|archive-date = 2010-07-14}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)