Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stellar dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== A worked example on moments of distribution functions in a uniform spherical cluster === We can find out various moments of the above distribution function, reformatted as with the help of three Heaviside functions, <math display="block"> f(|\mathbf{r}|,V_r,V_\theta,V_\varphi) = {C_0 \over V_0^3} \left.{\text{H}(1-x) \over \left(1-x^2\right)^{1 \over 2}}\right|_{x \equiv {|\mathbf{r}| \over r_0}} { \text{H}(V_\varphi) \text{H}(1-q) \over (1-q)^{1 \over 2} } , ~~ q(\mathbf{r},\mathbf{V}) \equiv {V_r^2 \over V_e(|\mathbf{r}|)^2} + {V_\theta^2 \over V_0^2} + {V_\varphi^2 \over V_0^2}, </math> once we input the expression for the earlier potential <math>\Phi(r) </math> inside <math> r \le r_0 </math>, or even better the speed to "escape from r to the edge" <math> r_0 </math> of a uniform sphere <math> V_e(r)=V_0 \sqrt{1-{r^2 \over r_0^2}}. </math> Clearly the factor <math> {V_e(|\mathbf{r}|) \over \sqrt{2Q} } = \sqrt{\max[0,{1 \over 1-q}]}</math> in the DF (distribution function) is well-defined only if <math>Q \ge 0 \rightarrow q\le 1 </math>, which implies a narrow range on radius <math> 0 \le |\mathbf{r}|<r_0 </math> and excludes high velocity particles, e.g., <math> V_t > V_0 > V_e(r) </math>, from the distribution function (DF, i.e., phase space density). In fact, the positivity carves the (<math> V_\varphi \ge 0 </math>) left-half of an ellipsoid in the <math>[V_r, V_\theta, V_\varphi]</math> velocity space ("velocity ellipsoid"), <math display="block"> q(\mathbf{r},\mathbf{V}) \equiv {V_r^2 \over V_0^2 (1-r^2/r_0^2)} + \left({V_\theta^2 \over V_0^2} + {V_\varphi^2 \over V_0^2} \right) \equiv u_r^2 + u_\theta^2 + u_\varphi^2 \le 1, </math> where <math> (u_r,u_\theta,u_\varphi)</math> is <math> (V_r, V_\theta,V_\varphi)</math> rescaled by the function <math> V_e(r)=V_0 \sqrt{1-r^2/r_0^2} </math> or <math> V_0 </math> respectively. The velocity ellipsoid (in this case) has rotational symmetry around the r axis or <math> V_r </math> axis. It is more squashed (in this case) away from the radial direction, hence more tangentially anisotropic because everywhere <math> V_e(r) < V_0 </math>, except at the origin, where the ellipsoid looks isotropic. Now we compute the moments of the phase space. E.g., the resulting density (moment) is <math display="block">\begin{align} \rho(r,\theta,\varphi) & = \int_{-V_e(r)}^{V_e(r)} dV_r \int_{-V_0}^{V_0} dV_\theta \int_{0}^{V_0} dV_\varphi {C_0 \over V_0^3} \left({2Q \over V_0^2}\right)^{-1/2} \\ & = \int_{-1}^{1} \int_{-1}^{1} \int_0^1 { (V_e du_r) (V_0 du_\theta) (V_0 du_\varphi) C_0 \over V_0^3 (1- r^2/r_0^2)^{1/2} (1 - q)^{1/2} }\left.\right|_{q=u_r^2 + u_\theta^2 + u_\varphi^2}\\ & = C_0 { \int_0^1 (1-u^2)^{-1/2} (2\pi u^2 du)} = \rho_0 \end{align}</math> is indeed a spherical (angle-independent) and uniform (radius-independent) density inside the edge, where the normalisation constant <math> C_0 =2 \pi^{-2} \rho_0 </math>. The streaming velocity is computed as the weighted mean of the velocity vector <math display="block">\begin{align} \langle\mathbf{V}\rangle (\mathbf{x}) & \equiv {\int f d\mathbf{V}^3 \mathbf{V} \over \int f d\mathbf{V}^3 } \\ & = {1 \over \rho} \int f d\mathbf{V}^3 [V_r, V_\theta, V_\varphi] {C_0 V_0^2 (2Q)^{-1/2}} \\ & = \left[{ \int_{-1}^{1} \!\!u_r...du_r, ~~\int_{-1}^{1} \!\!u_\theta...du_\theta , ~~\int_0^1 (2du_r) \int_{0}^{\sqrt{1-u_r^2}} \!\!(2du_\theta) \int_{0}^{\sqrt{1-u_r^2-u_\theta^2}} \!\!\!\!\!\!\!\!\!\!{du_\varphi u_\varphi V_0 \over (1 - u_r^2 - u_\theta^2 - u_\varphi^2)^{1/2} } \over \int_{0}^1 (2\pi U dU) \int_{0}^{\sqrt{1-U^2}} du_\varphi (1 - U^2 - u_\varphi^2)^{-1/2} }\right] \\ & = \left[0,0,{4 V_0 \over 3\pi}\right] = \overline{\mathbf{V}(\mathbf{x})}, \end{align}</math> where the global average (indicated by the overline bar) of flow implies uniform pattern of flat azimuthal rotation, but zero net streaming everywhere in the meridional <math> (r,\theta)</math> plane. Incidentally, the angular momentum global average of this flat-rotation sphere is <math display="block"> \overline{\mathbf{r} \times \langle\mathbf{V}\rangle} = \int_0^{r_0} {(\rho 4\pi r^2 dr) \over M_0} [0,0,r \langle V_\varphi\rangle] = [0, 0, {3 r_0\over 4} \overline{V_\varphi}]. </math> Note global average of centre of mass does not change, so <math> \overline{\mathbf{V}_i(\mathbf{x})} =0 </math> due to global momentum conservation in each rectangular direction <math> i=x,y,z</math>, and this does not contradict the global non-zero rotation. Likewise thanks to the symmetry of <math> f(r,\theta,\varphi,V_r,V_\theta,V_\varphi) = f(r,\theta,\pm \varphi, \pm V_r, \pm V_\theta,V_\varphi) </math>, we have <math> \langle\mathbf{(\pm V_r) V_\varphi}\rangle =0 </math>, <math>~ \langle \mathbf{(\pm V_\theta) V_\varphi}\rangle =0 </math>, <math>~ \langle\mathbf{(\pm V_r) V_\theta}\rangle =0 </math> everywhere}. Likewise the rms velocity in the rotation direction is computed by a weighted mean as follows, E.g., <math display="block">\begin{align} \langle\mathbf{V}_\varphi^2\rangle(|\mathbf{x}|) &\equiv {\int f d\mathbf{V}^3 V_\varphi^2 \over \rho(|\mathbf{r}|)} \\ & = {\int_0^1 (2du_r) \int_{0}^{\sqrt{1-u_r^2}} (2du_\theta) \int_{0}^{\sqrt{1-u_r^2-u_\theta^2}} du_\varphi { (u_\varphi V_0)^2 \over (1 - q)^{1/2} } \over \int_0^1 { (2\pi u^2 du) (1 - u^2 )^{-1/2} } } \\ & = 0.25V_0^2 = 0.5 \langle V_t^2 \rangle \\ & = {\!\!\int_0^1 (2du_r)\!\! \int_{0}^{\sqrt{1-u_r^2}} (2du_\varphi) \!\!\int_{0}^{\sqrt{1-u_r^2-u_\varphi^2}} du_\theta { (u_\theta V_0)^2 \over (1 - q)^{1/2} } \over \int_0^1 { (2\pi u^2 du) (1 - u^2 )^{-1/2} } } \\ & =\langle\mathbf{V}_\theta^2\rangle(|\mathbf{x}|), \\ \end{align}</math> Here <math> \langle V_t^2 \rangle = \langle V_\theta^2 + V_\varphi^2\rangle =0.5V_0^2. </math> Likewise <math display="block"> \langle\mathbf{V}_r^2\rangle(\mathbf{x}) = {\!\!\int_0^1 (du_\varphi) \int_{0}^{\sqrt{1-u_\varphi^2}} \!\!(2du_\theta) \!\!\int_{0}^{\sqrt{1-u_\varphi^2-u_\theta^2}} \!\!\!{ (2du_r)(u_r V_e(r))^2 \over (1 - q)^{1/2} } \over \int_0^1 { (2\pi u^2 du) (1 - u^2 )^{-1/2} } } = \left({V_0 \over 2} \sqrt{1-{r^2 \over r_0^2}} \right)^2. </math> So the pressure tensor or dispersion tensor is <math display="block"> \begin{align} \sigma^2_{ij}(\mathbf{r})= & {P_{ij}(\mathbf{r}) \over \rho(\mathbf{r})} \\ =&\langle\mathbf{V}_i\mathbf{V}_j\rangle- \langle\mathbf{V}_i\rangle\langle\mathbf{V}_j\rangle \\ = & \begin{bmatrix} \left[1-({r \over r_0})^2\right]\left({V_0\over 2}\right)^2 & 0 & 0 \\ 0 & \left({V_0\over 2}\right)^2 & 0 \\ 0 & 0 & \left[1- ({8 \over 3 \pi})^2\right]\left({V_0\over 2}\right)^2 \end{bmatrix} \end{align} </math> with zero off-diagonal terms because of the symmetric velocity distribution. Note while there is no Dark Matter in producing the previous flat rotation curve, the price is shown by the reduction factor <math> {8 \over 3 \pi} = 0.8488</math> in the random velocity spread in the azimuthal direction. Among the diagonal dispersion tensor moments, <math> \sigma_\theta \equiv \sqrt{\sigma^2_{\theta\theta}} = 0.5V_0</math> is the biggest among the three at all radii, and <math> \sigma_\varphi \equiv \sqrt{\sigma^2_{\varphi\varphi}} \ge \sigma_r \equiv \sqrt{\sigma^2_{rr}} </math> only near the edge between <math> 0.8488 r_0 \le r \le r_0 </math>. The larger tangential kinetic energy than that of radial motion seen in the diagonal dispersions is often phrased by an anisotropy parameter <math display="block"> \beta(r) \equiv 1 - { 0.5\langle {\mathbf V_t}^2(|\mathbf{r}|) \rangle \over \langle{\mathbf V_r}^2\rangle(|\mathbf{r}|) } = 1 - {\langle {\mathbf V_\theta}^2(|\mathbf{r}|) \rangle \over \langle{\mathbf V_r}^2\rangle(|\mathbf{r}|) } = - {r^2 \over r_0^2 - r^2} \le 0; </math> a positive anisotropy would have meant that radial motion dominated, and a negative anisotropy means that tangential motion dominates (as in this uniform sphere).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)