Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Intrinsic quantum uncertainty=== Historically, the uncertainty principle has been confused<ref>{{Citation|last=Furuta|first=Aya|title=One Thing Is Certain: Heisenberg's Uncertainty Principle Is Not Dead|journal=Scientific American|year=2012|url=https://www.scientificamerican.com/article/heisenbergs-uncertainty-principle-is-not-dead/|access-date=2018-10-20|archive-date=2022-04-01|archive-url=https://web.archive.org/web/20220401183444/https://www.scientificamerican.com/article/heisenbergs-uncertainty-principle-is-not-dead/|url-status=live}}</ref><ref name="Ozawa2003">{{Citation | last=Ozawa | first=Masanao | title=Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement | journal=Physical Review A | volume=67 | year=2003 | doi=10.1103/PhysRevA.67.042105|arxiv = quant-ph/0207121 |bibcode = 2003PhRvA..67d2105O | issue=4 | pages=42105 | s2cid=42012188}}</ref> with a related effect in [[physics]], called the [[observer effect (physics)|observer effect]], which notes that measurements of certain systems cannot be made without affecting the system,<ref>{{Citation |last=Wheeler |first=John Archibald |title=The 'Past' and the 'Delayed-Choice' Double-Slit Experiment |date=1978-01-01 |url=https://www.sciencedirect.com/science/article/pii/B9780124732506500066 |work=Mathematical Foundations of Quantum Theory |pages=9–48 |editor-last=Marlow |editor-first=A. R. |access-date=2023-07-19 |publisher=Academic Press |language=en |doi=10.1016/b978-0-12-473250-6.50006-6 |isbn=978-0-12-473250-6 |archive-date=2022-12-10 |archive-url=https://web.archive.org/web/20221210014455/https://www.sciencedirect.com/science/article/pii/B9780124732506500066 |url-status=live }}</ref><ref>{{Citation |last=Wheeler |first=John Archibald |title=Include the Observer in the Wave Function? |date=1977 |url=https://doi.org/10.1007/978-94-010-1196-9_1 |work=Quantum Mechanics, A Half Century Later: Papers of a Colloquium on Fifty Years of Quantum Mechanics, Held at the University Louis Pasteur, Strasbourg, May 2–4, 1974 |pages=1–18 |editor-last=Lopes |editor-first=José Leite |access-date=2023-07-19 |series=Episteme |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/978-94-010-1196-9_1 |isbn=978-94-010-1196-9 |editor2-last=Paty |editor2-first=Michel |archive-date=2024-02-23 |archive-url=https://web.archive.org/web/20240223170245/https://link.springer.com/chapter/10.1007/978-94-010-1196-9_1 |url-status=live }}</ref> that is, without changing something in a system. Heisenberg used such an observer effect at the quantum level (see below) as a physical "explanation" of quantum uncertainty.<ref>Werner Heisenberg, ''The Physical Principles of the Quantum Theory'', p. 20</ref> It has since become clearer, however, that the uncertainty principle is inherent in the properties of all [[wave|wave-like systems]],<ref name="Rozema">{{Cite journal | last1 = Rozema | first1 = L. A. | last2 = Darabi | first2 = A. | last3 = Mahler | first3 = D. H. | last4 = Hayat | first4 = A. | last5 = Soudagar | first5 = Y. | last6 = Steinberg | first6 = A. M. | doi = 10.1103/PhysRevLett.109.100404 |arxiv = 1208.0034v2| title = Violation of Heisenberg's Measurement–Disturbance Relationship by Weak Measurements | journal = Physical Review Letters | volume = 109 | issue = 10 | year = 2012 | pmid = 23005268|bibcode = 2012PhRvL.109j0404R | page=100404| s2cid = 37576344 }}</ref> and that it arises in quantum mechanics simply due to the [[matter wave]] nature of all quantum objects.<ref>{{Cite journal |last=De Broglie |first=Louis |date=October 1923 |title=Waves and Quanta |journal=Nature |language=en |volume=112 |issue=2815 |pages=540 |doi=10.1038/112540a0 |bibcode=1923Natur.112..540D |s2cid=186242764 |issn=1476-4687|doi-access=free }}</ref> Thus, the uncertainty principle actually states a fundamental property of quantum systems and is not a statement about the observational success of current technology.<ref name=nptel>{{YouTube|TcmGYe39XG0|Indian Institute of Technology Madras, Professor V. Balakrishnan, Lecture 1 – Introduction to Quantum Physics; Heisenberg's uncertainty principle, National Programme of Technology Enhanced Learning}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)