Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Rotation ==== Consider an orthogonal system for an N-particle system: <math display="block">\begin{array}{l}{{\mathbf q=\left(x_{1},y_{1},z_{1},\ldots,x_{n},y_{n},z_{n}\right),}}\\ {{\mathbf p=\left(p_{1x},p_{1y},p_{1z},\ldots,p_{n x},p_{n y},p_{n z}\right).}}\end{array}</math> Choosing the generator to be: <math>G=L_{z}=\sum_{i=1}^{n}\left(x_{i}p_{i y}-y_{i}p_{i x}\right) </math> and the infinitesimal value of <math> \alpha = \delta \phi </math>, then the change in the coordinates is given for x by: <math display="block">\begin{array}{c} {\delta x_{i}=\{x_{i},G\}\delta\phi=\displaystyle\sum_{j} \{x_{i},x_{j}p_{j y}-y_{j}p_{j x}\}\delta\phi=\displaystyle\sum_{j}(\underbrace{\{x_{i},x_{j}p_{j y}\}}_{=0} -{ \{x_{i},y_{j}p_{j x}\}}})\delta\phi\\ {{=\displaystyle -\sum_{j} y_{j} \underbrace{\{x_i,p_{jx}\}}_{=\delta_{ij}}\delta\phi=- y_{i} \delta \phi}} \end{array} </math> and similarly for y: <math display="block">\begin{array}{c} \delta y_{i}=\{y_{i},G\}\delta\phi=\displaystyle\sum_{j}\{y_{i},x_{j}p_{j y}-y_{j}p_{j x}\}\delta\phi=\displaystyle\sum_{j}(\{y_{i},x_{j}p_{j y}\}-\underbrace{ \{y_{i},y_{j}p_{j x}\}}_{=0})\delta \phi\\ {=\displaystyle\sum_{j}x_{j}\underbrace{\{y_i,p_{jy}\}}_{=\delta_{ij}} \delta\phi=x_{i}\delta\phi\,,} \end{array} </math> whereas the z component of all particles is unchanged: <math display="inline"> \delta z_{ i }=\left\{z_{i},G\right\}\delta\phi=\sum_{j}\left\{z_{i},x_{j}p_{j y}-y_{j}p_{j x}\right\}\delta \phi =0</math>. These transformations correspond to rotation about the z axis by angle <math>\delta \phi </math> in its first order approximation. Hence, repeated application of the infinitesimal canonical transformation generates a rotation of system of particles about the z axis. If the Hamiltonian is invariant under rotation about the z axis, the generator, the component of angular momentum along the axis of rotation, is an invariant of motion.<ref name=":1" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)