Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==External links== *{{Commons category-inline}} * {{MathWorld |title=Chebyshev polynomial[s] of the first kind |urlname=ChebyshevPolynomialoftheFirstKind }} * {{cite web |first=John H. |last=Mathews |year=2003 |title=Module for Chebyshev polynomials |series=Course notes for Math 340 ''Numerical Analysis'' & Math 440 ''Advanced Numerical Analysis'' |publisher=California State University |place=Fullerton, CA |department=Department of Mathematics |url=http://math.fullerton.edu/mathews/n2003/ChebyshevPolyMod.html |url-status=dead |access-date=2020-08-17 |df=dmy-all |archive-url=https://web.archive.org/web/20070529221407/http://math.fullerton.edu/mathews/n2003/ChebyshevPolyMod.html |archive-date=2007-05-29 }} * {{cite web |title=Numerical computing with functions |url=http://www.chebfun.org |website=The Chebfun Project }} * {{cite web |title=Is there an intuitive explanation for an extremal property of Chebyshev polynomials? |website=Math Overflow |id=Question 25534 |url=https://mathoverflow.net/q/25534 }} * {{cite web |title=Chebyshev polynomial evaluation and the Chebyshev transform |website=Boost |series=Math |url=https://www.boost.org/doc/libs/release/libs/math/doc/html/math_toolkit/sf_poly/chebyshev.html }} {{Authority control}} [[Category:Special hypergeometric functions]] [[Category:Orthogonal polynomials]] [[Category:Polynomials]] [[Category:Approximation theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)