Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Convolution versus multiplication==== In general, [[Regularization (physics)|regularity]] is required for multiplication products, and [[Principle of locality|locality]] is required for convolution products. It is expressed in the following extension of the [[Convolution theorem|Convolution Theorem]] which guarantees the existence of both convolution and multiplication products. Let <math>F(\alpha) = f \in \mathcal{O}'_C</math> be a rapidly decreasing tempered distribution or, equivalently, <math>F(f) = \alpha \in \mathcal{O}_M</math> be an ordinary (slowly growing, smooth) function within the space of tempered distributions and let <math>F</math> be the normalized (unitary, ordinary frequency) [[Fourier transform]].<ref>{{cite book|last=Folland|first=G.B.|title=Harmonic Analysis in Phase Space|publisher=Princeton University Press|publication-place=Princeton, NJ|year=1989}}</ref> Then, according to {{harvtxt|Schwartz|1951}}, <math display=block>F(f * g) = F(f) \cdot F(g) \qquad \text{ and } \qquad F(\alpha \cdot g) = F(\alpha) * F(g)</math> hold within the space of tempered distributions.<ref>{{cite book|last=Horváth|first=John|author-link = John Horvath (mathematician)|title=Topological Vector Spaces and Distributions|publisher=Addison-Wesley Publishing Company|publication-place=Reading, MA|year=1966}}</ref><ref>{{cite book|last=Barros-Neto|first=José|title=An Introduction to the Theory of Distributions|publisher=Dekker|publication-place=New York, NY|year=1973}}</ref><ref>{{cite book|last=Petersen|first=Bent E.|title=Introduction to the Fourier Transform and Pseudo-Differential Operators|publisher=Pitman Publishing|publication-place=Boston, MA|year=1983}}</ref> In particular, these equations become the [[Poisson summation formula|Poisson Summation Formula]] if <math>g \equiv \operatorname{\text{Ш}}</math> is the [[Dirac comb|Dirac Comb]].<ref>{{cite book|last=Woodward|first=P.M.|title=Probability and Information Theory with Applications to Radar|publisher=Pergamon Press|publication-place=Oxford, UK|year=1953}}</ref> The space of all rapidly decreasing tempered distributions is also called the space of {{em|convolution operators}} <math>\mathcal{O}'_C</math> and the space of all ordinary functions within the space of tempered distributions is also called the space of {{em|multiplication operators}} <math>\mathcal{O}_M.</math> More generally, <math>F(\mathcal{O}'_C) = \mathcal{O}_M</math> and <math>F(\mathcal{O}_M) = \mathcal{O}'_C.</math>{{sfn|Trèves|2006|pp=318-319}}<ref>{{cite book|last1=Friedlander|first1=F.G.|last2=Joshi|first2=M.S.|title=Introduction to the Theory of Distributions|publisher=Cambridge University Press|publication-place=Cambridge, UK|year=1998}}</ref> A particular case is the [[Paley–Wiener theorem#Schwartz's Paley–Wiener theorem|Paley-Wiener-Schwartz Theorem]] which states that <math>F(\mathcal{E}') = \operatorname{PW}</math> and <math>F(\operatorname{PW} ) = \mathcal{E}'.</math> This is because <math>\mathcal{E}' \subseteq \mathcal{O}'_C</math> and <math>\operatorname{PW} \subseteq \mathcal{O}_M.</math> In other words, compactly supported tempered distributions <math>\mathcal{E}'</math> belong to the space of {{em|convolution operators}} <math>\mathcal{O}'_C</math> and Paley-Wiener functions <math>\operatorname{PW},</math> better known as [[Bandlimiting|bandlimited functions]], belong to the space of {{em|multiplication operators}} <math>\mathcal{O}_M.</math>{{sfn|Schwartz|1951}} For example, let <math>g \equiv \operatorname{\text{Ш}} \in \mathcal{S}'</math> be the Dirac comb and <math>f \equiv \delta \in \mathcal{E}'</math> be the [[Dirac delta function|Dirac delta]];then <math>\alpha \equiv 1 \in \operatorname{PW}</math> is the function that is constantly one and both equations yield the [[Dirac comb#Dirac-comb identity|Dirac-comb identity]]. Another example is to let <math>g</math> be the Dirac comb and <math>f \equiv \operatorname{rect} \in \mathcal{E}'</math> be the [[rectangular function]]; then <math>\alpha \equiv \operatorname{sinc} \in \operatorname{PW}</math> is the [[sinc function]] and both equations yield the [[Nyquist–Shannon sampling theorem|Classical Sampling Theorem]] for suitable <math>\operatorname{rect}</math> functions. More generally, if <math>g</math> is the Dirac comb and <math>f \in \mathcal{S} \subseteq \mathcal{O}'_C \cap \mathcal{O}_M</math> is a [[Smoothness|smooth]] [[window function]] ([[Schwartz space|Schwartz function]]), for example, the [[Gaussian function|Gaussian]], then <math>\alpha \in \mathcal{S}</math> is another smooth window function (Schwartz function). They are known as [[mollifier]]s, especially in [[partial differential equation]]s theory, or as [[Regularization (mathematics)|regularizers]] in [[Regularization (physics)|physics]] because they allow turning [[generalized function]]s into [[Function (mathematics)|regular functions]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)