Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spherical harmonics === Let the set of [[Homogeneous polynomial|homogeneous]] [[Harmonic function|harmonic]] [[polynomial]]s of degree {{mvar|k}} on {{math|'''R'''<sup>''n''</sup>}} be denoted by {{math|'''A'''<sub>''k''</sub>}}. The set {{math|'''A'''<sub>''k''</sub>}} consists of the [[solid spherical harmonics]] of degree {{mvar|k}}. The solid spherical harmonics play a similar role in higher dimensions to the Hermite polynomials in dimension one. Specifically, if {{math|1=''f''(''x'') = ''e''<sup>βΟ{{abs|''x''}}<sup>2</sup></sup>''P''(''x'')}} for some {{math|''P''(''x'')}} in {{math|'''A'''<sub>''k''</sub>}}, then {{math|1=''fΜ''(''ΞΎ'') = ''i''{{isup|β''k''}} ''f''(''ΞΎ'')}}. Let the set {{math|'''H'''<sub>''k''</sub>}} be the closure in {{math|''L''<sup>2</sup>('''R'''<sup>''n''</sup>)}} of linear combinations of functions of the form {{math|''f''({{abs|''x''}})''P''(''x'')}} where {{math|''P''(''x'')}} is in {{math|'''A'''<sub>''k''</sub>}}. The space {{math|''L''<sup>2</sup>('''R'''<sup>''n''</sup>)}} is then a direct sum of the spaces {{math|'''H'''<sub>''k''</sub>}} and the Fourier transform maps each space {{math|'''H'''<sub>''k''</sub>}} to itself and is possible to characterize the action of the Fourier transform on each space {{math|'''H'''<sub>''k''</sub>}}.<ref name="Stein-Weiss-1971" /> Let {{math|1=''f''(''x'') = ''f''<sub>0</sub>({{abs|''x''}})''P''(''x'')}} (with {{math|''P''(''x'')}} in {{math|'''A'''<sub>''k''</sub>}}), then <math display="block">\hat{f}(\xi)=F_0(|\xi|)P(\xi)</math> where <math display="block">F_0(r) = 2\pi i^{-k}r^{-\frac{n+2k-2}{2}} \int_0^\infty f_0(s)J_\frac{n+2k-2}{2}(2\pi rs)s^\frac{n+2k}{2}\,ds.</math> Here {{math|''J''<sub>(''n'' + 2''k'' β 2)/2</sub>}} denotes the [[Bessel function]] of the first kind with order {{math|{{sfrac|''n'' + 2''k'' β 2|2}}}}. When {{math|''k'' {{=}} 0}} this gives a useful formula for the Fourier transform of a radial function.<ref>{{harvnb|Grafakos|2004}}</ref> This is essentially the [[Hankel transform]]. Moreover, there is a simple recursion relating the cases {{math|''n'' + 2}} and {{mvar|n}}<ref>{{harvnb|Grafakos|Teschl|2013}}</ref> allowing to compute, e.g., the three-dimensional Fourier transform of a radial function from the one-dimensional one.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)