Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Definitions ==== Expansions of (formal) ''Jacobi-type'' and ''Stieltjes-type'' [[generalized continued fraction|continued fractions]] (''{{mvar|J}}-fractions'' and ''{{mvar|S}}-fractions'', respectively) whose {{mvar|h}}th rational convergents represent [[Order of accuracy|{{math|2''h''}}-order accurate]] power series are another way to express the typically divergent ordinary generating functions for many special one and two-variate sequences. The particular form of the [[Jacobi-type continued fraction]]s ({{mvar|J}}-fractions) are expanded as in the following equation and have the next corresponding power series expansions with respect to {{mvar|z}} for some specific, application-dependent component sequences, {{math|{ab<sub>''i''</sub>}<nowiki/>}} and {{math|{''c''<sub>''i''</sub>}<nowiki/>}}, where {{math|''z'' β 0}} denotes the formal variable in the second power series expansion given below:<ref>For more complete information on the properties of {{mvar|J}}-fractions see: *{{cite journal |first=P. |last=Flajolet |title=Combinatorial aspects of continued fractions |journal=Discrete Mathematics |volume=32 |issue=2 |pages=125β161 |year=1980 |doi=10.1016/0012-365X(80)90050-3 |url=http://algo.inria.fr/flajolet/Publications/Flajolet80b.pdf}} *{{cite book |first=H.S. |last=Wall |title=Analytic Theory of Continued Fractions |url=https://books.google.com/books?id=86ReDwAAQBAJ&pg=PR7 |date=2018 |orig-year=1948 |publisher=Dover |isbn=978-0-486-83044-5}}</ref> <math display="block">\begin{align} J^{[\infty]}(z) & = \cfrac{1}{1-c_1 z-\cfrac{\text{ab}_2 z^2}{1-c_2 z-\cfrac{\text{ab}_3 z^2}{\ddots}}} \\[4px] & = 1 + c_1 z + \left(\text{ab}_2+c_1^2\right) z^2 + \left(2 \text{ab}_2 c_1+c_1^3 + \text{ab}_2 c_2\right) z^3 + \cdots \end{align}</math> The coefficients of <math>z^n</math>, denoted in shorthand by {{math|''j<sub>n</sub>'' β [''z<sup>n</sup>''] ''J''<sup>[β]</sup>(''z'')}}, in the previous equations correspond to matrix solutions of the equations: <math display="block">\begin{bmatrix}k_{0,1} & k_{1,1} & 0 & 0 & \cdots \\ k_{0,2} & k_{1,2} & k_{2,2} & 0 & \cdots \\ k_{0,3} & k_{1,3} & k_{2,3} & k_{3,3} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix}k_{0,0} & 0 & 0 & 0 & \cdots \\ k_{0,1} & k_{1,1} & 0 & 0 & \cdots \\ k_{0,2} & k_{1,2} & k_{2,2} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \cdot \begin{bmatrix}c_1 & 1 & 0 & 0 & \cdots \\ \text{ab}_2 & c_2 & 1 & 0 & \cdots \\ 0 & \text{ab}_3 & c_3 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}, </math> where {{math|''j''<sub>0</sub> β‘ ''k''<sub>0,0</sub> {{=}} 1}}, {{math|''j<sub>n</sub>'' {{=}} ''k''<sub>0,''n''</sub>}} for {{math|''n'' β₯ 1}}, {{math|''k''<sub>''r'',''s''</sub> {{=}} 0}} if {{math|''r'' > ''s''}}, and where for all integers {{math|''p'', ''q'' β₯ 0}}, we have an ''addition formula'' relation given by: <math display="block">j_{p+q} = k_{0,p} \cdot k_{0,q} + \sum_{i=1}^{\min(p, q)} \text{ab}_2 \cdots \text{ab}_{i+1} \times k_{i,p} \cdot k_{i,q}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)